Skip to main content

Operator theory

Problems

  • 734 Accesses

Part of the Lecture Notes in Mathematics book series (LNM,volume 1043)

Keywords

  • Hilbert Space
  • Invariant Subspace
  • Discrete Spectrum
  • Point Spectrum
  • Blaschke Product

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0072187
  • Chapter length: 143 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-38758-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   74.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simon B. Schrödinger semigroups.-Bull.Amer.Math.Soc., 1982, 7, 447–526.

    MathSciNet  MATH  CrossRef  Google Scholar 

  2. Береэанский Ю.М. Раэложение по собственным функциям самосопряженных операторов. Киев, Наукова думка, 1965 (Transl.Math. Mono., V. 17, Amer.Math.Soc., Providence, R.I., 1968).

    Google Scholar 

  3. Коваленко В.Ф., Семёнов Ю.А. Некоторые вопросы раэложения по обобшенным собственным функциям оператора Щредингера с сильно сингулярными потенциалами.-Успехи мат.наук, 1978, 33, вып.4, 107–140 (Russian Math.Surveys, 1978, 33, 119–157).

    Google Scholar 

  4. Pastur L. Spectral properties of disordered systems in one-body approximation.-Comm.Math.Phys., 1980, 75, 179.

    MathSciNet  MATH  CrossRef  Google Scholar 

  5. Avron J., Simon B. Singular continuous spectrum for a class of almost periodic Jacobi matrices.-Bull.Amer.Math.Soc., 1982, 6, 81–86.

    MathSciNet  MATH  CrossRef  Google Scholar 

  6. Маслов В.П. Об асимптотике обобшенных собственных функций уравнения Щредингера.-Успехи мат.наук, 1961,16, вып.4, 253–254.

    Google Scholar 

  7. Simon B., Spencer T. unpublished.

    Google Scholar 

References

  1. Dollard J. Asymptotic convergence and Coulomb interaction.-J.Math.Phys., 1964, 5, 729–738.

    MathSciNet  CrossRef  Google Scholar 

  2. Сахнович Л.А. Обобшенные волновые операторы.-Матем.сб., 1970, 81, No 2, 209–227.

    Google Scholar 

  3. Сахнович Л.А. Обобшённые волновые операторы и регуляриэация ряда теорий воэмушений.-Теор. и матем.фиэика, 1970, 2, No 1, 80–86.

    Google Scholar 

  4. Буслаев В.С, Матвеев Б.Б. Волновые операторы для уравнения Шре'дингера с медленно убываюшим потенциалом.-Теор. и матем.фиэика, 1970, 2, 367–376.

    Google Scholar 

  5. Сахнович Л.А. Принцип инвариантности для обобшенных волновых операторов.-Функц.аналиэ и его прилож., 1971, 5, No 1, 61–68.

    Google Scholar 

  6. Туннельные явления в твердых телах. МИР, 1973.

    Google Scholar 

  7. Бродский А.М., Гуревич А.Ю. Теория злектронной змиссии иэ металлов, 1973.

    Google Scholar 

  8. Фаддеев Л.Д., Математические вопросы квантовой теории рассеяния для системы трех частиц.-Тр.Матем.ин-та им. В.А.Стек-лова, 1963, т.69.

    Google Scholar 

  9. Сахнович Л.А. Об учете всех каналов рассеяния в эадаче n тел с кулоновским вэаимодействием.-Теор. и матем.фиэика, 1972, 13, No 3, 421–427.

    Google Scholar 

  10. Сахнович Л.А. О формуле Ритца и квантовых дефектах спектра радиального уравнения Щредингера.-Иэв.АН СССР, сер.ма-тем., 1966, 30, No 6, 1297–1310.

    Google Scholar 

  11. Костенко Н.М. Об одном операторе преобраэования.-Иэв. высщ.уч.эав., Математика, 1977, 9, 43–47.

    Google Scholar 

  12. Сахнович Л.А. О свойствах дискретного и непрерывного спектров радиального уравнения Дирака.-Докл.АН СССР, 1969, 185, No 1, 61–64.

    Google Scholar 

  13. Сахнович Л.А. Об одной полуобратной эадаче.-Успехи матем.наук, 1963, 18, No 3, 199–206.

    Google Scholar 

References

  1. Magnus W., Winkler. Hill's Equation, New York, Interscience-Wiley, 1966.

    MATH  Google Scholar 

  2. Hochstadt H. Function-theoretic properties of the discriminant of Hill's equation.-Math.Zeit., 1963, 82, 237–242.

    MathSciNet  MATH  CrossRef  Google Scholar 

  3. Trubowitz E. The inverse problem for periodic potentials.-Comm.Pure Appl.Math., 1977, 30, 321–337.

    MathSciNet  MATH  CrossRef  Google Scholar 

  4. Дубровин Б.А., Новиков СП. Периодическая эадача для уравнений Кортевега-де Фриэа и Щтурма-Лиувилля. Их свяэь с алгебраической геометрией.-Докл.АН СССР, 1974, 219, 3, 531–534.

    Google Scholar 

  5. McKean H.P., P. van Moerbeke. The spectrum of Hill's equation.-Invent.Math., 1975, 30, 217–274.

    MathSciNet  MATH  CrossRef  Google Scholar 

  6. McKean H.P., Trubowitz E. Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points.-Comm.Pure Appl.Math., 1976, 29, 143–226.

    MathSciNet  MATH  CrossRef  Google Scholar 

  7. Lax P. Periodic solutions of the Kdv equation.-Comm.Pure Appl.Math., 1975, 28, 141–188.

    MathSciNet  MATH  CrossRef  Google Scholar 

  8. Koosis P. Weighted polynomial approximation on arithmetic progressions of intervals or points.-Acta Math., 1966, 116, 223–277.

    MathSciNet  MATH  CrossRef  Google Scholar 

  9. Фаддеев Л.Д. Свойства S-матрицы одномерного уравнения Щредингера.-Тр.Матем.ин-та АН СССР, 1964, 73, 314–336.

    Google Scholar 

  10. Deift P., Trubowitz E. Inverse scattering on the line.-Comm.Pure Appl.Math., 1979, 32, N 2, 121–251.

    MathSciNet  MATH  CrossRef  Google Scholar 

  11. McKean H.P. Theta functions, solutions, and singular curves. (Proc.Conf., Park City, Utah., 1977, 237–254), Lecture Notes in Pure and Appl.Math., 48, Dekker, New York, 1979.

    MATH  Google Scholar 

References

  1. Фаддеев Л.Д. О модели Фридрихса в теории воэмушений.-Труды Матем.ин-та АН СССР им.В.А.Стеклова, 1964, 30, 33–75.

    Google Scholar 

  2. Павлов Б.С., Петрас С.В. О сингулярном спектре слабо воэмушенного оператора умножения.-Функц.анал. и его прил., 1970, 4, No 2, 54–61.

    Google Scholar 

  3. Павлов Б.С. Теорема единственности для функций с положительной мнимой частью.-В кн.: Проблемы матем.фиэики, ЛТУ, 1970, 118–124.

    Google Scholar 

References

  1. Набоко С.Н. Теоремы единственности для оператор-функций с положительной мнимой частью и сингулярный спектр в самосопряженной модели Фридрихса.-Докл.АН СССР, 1983 (в печати).

    Google Scholar 

  2. Haóoko C.H. Private communication.

    Google Scholar 

References

  1. Макаров Н.Г. Унитарный точечный спектр почти унитарных операторов.-Зап.научн.сеыин.ЛОМИ, 1983, 126, 143–149.

    Google Scholar 

  2. Clark D. One dimensional perturbations of restricted shifts.-J.Analyse Math., 1972, 25, 169–191.

    MathSciNet  MATH  CrossRef  Google Scholar 

References

  1. Гохберг И.Ц., Крупник Н.Я. Введение в теорию одномерных сингулярных интегральных операторов. Кищинев, Щтиинца, 1973.

    Google Scholar 

  2. Ильин Е.М. Характеристики рассеяния для эадачи о дифракции на клине и на зкране.-Записки науч.еемин.ЛОМИ, 1982, 107, 193–197.

    Google Scholar 

References

  1. Bognar J. Indefinite inner product spaces.-Springer-Verlag, 1974.

    Google Scholar 

  2. Аэиэов Т.Я., Иохвидов И.С. Линейные операторы в пространствах с индефинитной метрикой и их приложения. "Математический аналиэ. Том 17 (Итоги науки и техники)", 1979, Москва, ВИНИТИ, 105–207.

    Google Scholar 

  3. Мацаев В.И., Палант Ю.А. О степенях ограниченного диссипативного оператора.-Укр.матем.журнал, 1962, 14, 329–337.

    Google Scholar 

  4. Langer H. Über die Wurzeln eines maximalen dissipativen Operators.-Acta Math. 1962, XIII, N 3–4, 415–424.

    MATH  Google Scholar 

References

  1. De Branges L. Square Summable Power Series, Addison-Wesley, to appear.

    Google Scholar 

  2. De Branges L. The model theory for contractive transformations.-In: Proceedings of the Symposium on the Mathematical Theory of Networks and Systems in Beersheva, Springer Verlag, to appear.

    Google Scholar 

  3. De Branges L., Shulman L. Perturbations of unitary transformations.-J.Math.Anal.Appl., 1968, 23, 294–326.

    MathSciNet  MATH  CrossRef  Google Scholar 

  4. De Branges L. Perturbation theory.-J.Math Anal.Appl., 1977, 57, 393–415.

    MathSciNet  MATH  CrossRef  Google Scholar 

  5. Гохберг И.Ц., Крейн М.Г. Теория вольтерроввх операторов в гильбертовом пространстве и ее приложения, М., Наука, 1967 (Translations of Mathematical Monographs, 24, Amer Math.Soc., 1970).

    Google Scholar 

  6. De Branges L. The expansion theorem for Hilbert spaces of analytic functions, Proceedings of the Workshop on Operator Theory in Rehovot, Birkhäuser Verlag, to appear.

    Google Scholar 

References

  1. Frankfurt R., Rovnyak J. Finite convolution operators.-J.Math.Anal.Appl., 1975, 49, 347–374.

    MathSciNet  MATH  CrossRef  Google Scholar 

References

  1. Szőkefalvi-Nagy B., Foiaş C. Harmonic analysis of operators on Hilbert space, North Holland/Akadémiai Kiadó (Amsterdam/Budapest, 1970).

    MATH  Google Scholar 

  2. Никольский Н.К., Павлов Б.С. Баэисы иэ собственных векторов вполне неунитарных сжатий и характеристическая функция.-Иэв.АН СССР, сер.матем., 1970, 34, No 1, 90–133.

    Google Scholar 

  3. Никольский Н.К., Павлов Б.С. Раэложения по собственным векторам неунитарных операторов и характеристическая функция.-Зап.научн.семин.ЛОМИ, 1968, 11, 150–203.

    Google Scholar 

  4. Никольский Н.К. Лекции об операторе сдвига. П.-Зап. научн.семин.ЮМИ, 1974, 47, 90–119.

    Google Scholar 

  5. Васюнин В.И. Беэусловно сходяшиеся спектральные раэложения и эадачи интерполяции.-Труды Матем.ин-та им.В.А.Стеклова АН СССР, 1978, 130, 5–49.

    Google Scholar 

References

  1. Sz.-Nagy B., Foiaş C. Harmonic analysis of operators on Hilbert space. North Holland-Akadémiai Kiadó, Amsterdam-Budapest, 1970.

    MATH  Google Scholar 

  2. Sz.-Nagy B. On uniformly bounded linear transformations in Hilbert space.-Acta Sci.Math., 1947, 11, 152–157.

    MathSciNet  Google Scholar 

  3. Иабоко С.Н. Об условиях подобия самосопряженным и унитарным операторам.-Функц.анал. и его прил. (в печати).

    Google Scholar 

  4. Davis Ch., Foiaş C. Operators with bounded characteristic functions and their γ-unitary dilation.-Acta Sci.Math, 1971, N 1–2, 127–139.

    Google Scholar 

  5. van Castern J. A problem of Sz.-Nagy.-Acta Sci. Math., 1980, 42, N 1–2, 189–194.

    MathSciNet  Google Scholar 

  6. Набохо С.НН. Абсолютно непрерывный спектр недассипативного оператора и функциональная модель. П.-Зал.научн.семин.ЛОМИ, 1977, 73, 118–135.

    Google Scholar 

  7. Набоко С.НН. О сингулярном спектре несамосопряженного оператора.-Зап.научн.семин.ЛОМИ, 1981, ИЗ, 149–177.

    Google Scholar 

References

  1. Sz.-Nagy B., Foiaş C. On contractions similar to isometries and Toeplitz operators.-Ann.Acad.Scient.Fennicae, Ser.A.I. Mathematica 1976, 2, 553–564.

    MathSciNet  MATH  CrossRef  Google Scholar 

  2. Arveson W. Interpolation problems in nest algebras.-J.Func.Anal., 1975, 20, 208–233.

    MathSciNet  MATH  CrossRef  Google Scholar 

References

  1. Толоконников В.А. Оценки в теореме Карлесона о короне и конечнопорожденные идеалы алгебры H.-функц.анал. и его прил., 1980, 14, No 4, 85–86.

    Google Scholar 

  2. Никольский Н.К. Лекции об операторе сдвига. М., Наука, 1980.

    Google Scholar 

  3. Толоконников В.А. Оценки в теореме Карлесона о короне. Идеалы алгебры H, эадача Сёкефальви-Надя.-Зап.научн.семин. ЛОМИ, 1981, 113, 178–198.

    Google Scholar 

  4. Uchiyama A. Corona theorems for countably many functions and estimates for their solutions. Preprint, 1981, University of California at Los Angeles.

    Google Scholar 

  5. Rosenblum M. A corona theorem for countably many functions.-Integral equat. and operator theory, 1980, 3, N 1, 125–137.

    MathSciNet  MATH  CrossRef  Google Scholar 

  6. Schubert C.F. The corona theorem as an operator theorem.-Proc.Amer.Math.Soc., 1978, 69, N 1, 73–76.

    MathSciNet  MATH  CrossRef  Google Scholar 

References

  1. Sz.-Nagy B., Foiaş C. Harmonic analysis of operators on Hilbert space, North Holland/Akadémiai Kiadó, Amsterdam Budapest, 1970.

    MATH  Google Scholar 

  2. Никольский Н.К. Лекции об операторе сдвига, М., Наука, 1980.

    Google Scholar 

Reference

  1. Helson H. Lectures on invariant subspaces. NY-London, Academic Press, 1964.

    MATH  Google Scholar 

References

  1. Ливщиц М.С. Об одном классе линейных операторов Б гильбертовом пространстве.-Матем.сб. 1946, 19(61), 236–260.

    Google Scholar 

  2. Ливщиц М.С. Иэометрические операторы с равными дефектными числами, кваэиунитарные операторы.-Матем.сб.,1950,26,247–264.

    Google Scholar 

  3. Sz.-Nagy B., Foiaş C. Harmonic analysis of operators in Hilbert space. Budapest, Akad.Kiadó, 1970.

    MATH  Google Scholar 

  4. Адамян В.М., Аров Д.З., Крейн М.Г. Бесконечные ганкелевы матрицы и обобшенные проблемы Каратеодори-Фейера и И.Щу-ра.-функц.анал.и его прил., 1963,2,в.4, 1–17.

    Google Scholar 

  5. Адамян В.М., Аров Д.З., Крейн М.Г. Бесконечные блочно-ганкелевы матрицы и свяэанные с ними проблемы продолжения.-Иэв.АН Арм.ССР, сер.матем.,1971,6, 181–206.

    Google Scholar 

  6. Адамян В.М. Невырожденные унитарные сцепления полуунитарных операторов.-Функц.анал.и его прил., 1973,7, вып.4,1–16.

    Google Scholar 

References

  1. Аров Д.З. Об одной интерполяционной эадаче и индефинитном проиэведении Бдящке-Потапова. Теэисы докладов. Щкола по теории операторов в функц.пространствах, Минск, 1982, 14–15.

    Google Scholar 

  2. Аров Д.З. Реалиэация матриц-функций по Дарлингтону.-Иэв. АН СССР, сер.матем., 1973, 37, No 6, 1299–1331.

    Google Scholar 

  3. Адамян В.М., Аров Д.З., Крейн М.Г. Бесконечные ганкелевы матрицы и обобшенные эадачи Каратеодори-Фейера и И.Щура.-функц.аналиэ и его црилож., 1968, 2, вып.4, 1–17.

    Google Scholar 

  4. Адамян В.М., Аров Д.З., Крейн М.Г. Бесконечные блочно-ганкелевые матрицы и свяэанные с ними проблемы продолжения.-Иэв.АН Арм.ССР, матем., 1971, 6, No 2–3, 87–112.

    Google Scholar 

  5. Адамян В.М. Невырожденные унитарные сцепления полуунитарных операторов.-Функц.аналиэ и его црилож., 1973, 7, вып.4, 1–17.

    Google Scholar 

  6. Аров Д.З., Симакова Л.А. О граничных эначениях сходяшейся последовательности J-сжимаюших матриц-функций.-Матем.эаметки, 1976, 19, No 4, 491–500.

    Google Scholar 

  7. Потапов В.П. Мультипликативная структура J-нерастя-гивавднх матриц-функций.-Труды Моск.матем.о-ва, 1955, 4, 125–236.

    Google Scholar 

  8. Федчина И.П. Касательная проблема Неващщнны-Пика с кратными точками.-Докл.АН Арм.ССР, 1975, 61, No 4, 214–218.

    Google Scholar 

  9. Крейн М.Г. Обшие теоремы о поэитивных функционалах.-В кн.: Ахиеэер Н.И., Крейн М. О некоторых вопросах теории моментов. Харьков, 121–150. (AhiezerА N.I., Krein М. Some Questions in the Theory of Moments. Тrans.Math.Mon., АМS, 1962, v.2, 124–153.)

    Google Scholar 

  10. Меламуд Е.Я. Граничная эадача Неванлинны-Пика для J-ра-стягиваюших матриц-функций.-Иэвестия высщих учебных эаведений, Матем., 1984 (в печати).

    Google Scholar 

References

  1. Потапов В.П. Мультипликативная структура Y-нерастягива-юших матриц-функций.-Труды Моск.матем.об-ва, 1955, 4, 125–236.

    Google Scholar 

  2. Гинэбург Ю.П. Мультипликативные представления и миноранты ограниченных аналитических оператор-функций.-Функ.анал. и его прил., 1967, 1, No 3, 9–23.

    Google Scholar 

  3. Бродский М.С. Треугольные и жордановы представления линейных операторов.-Москва, "Наука", 1969.

    Google Scholar 

  4. Бродский М.С., Исаев Л.Е. Треугольные представления диссипативных операторов с реэольвентой зкспоненциального типа.-Докл.АН СССР, 1969, 188, No 5, 971–973.

    Google Scholar 

  5. Гинэбург Ю.П. О делителях и минорантах оператор-функций ограниченного вида.-Матем.исследования, Кищинёв, 1967, 2, No 4, 47–72.

    Google Scholar 

  6. Могилевская Р.Л. Немонотонные мультипликативные представления ограниченных аналитических оператор-функций.-Матем.исследования, Кищинёв, 4, No 4, 1969, 70–81.

    Google Scholar 

  7. Кисилевский Г.Э. Инвариантные подпространства воль-терровых дассипативных операторов с ядерными мнимыми компонентами.-Иэвестия АН СССР, сер.матем., 1968, 32, No 1, 3–23.

    Google Scholar 

  8. Гохберг И.Ц., Крейн М.Г. Теория вольтерровых операторов в гильбертовом пространстве и её приложения. Москва, "Наука", 1967.

    Google Scholar 

  9. Сахнович л.А. О диссипативных вольтерровых операторах.-Матем.сб орник, 1968, 76 (118), No 3, 323–343.

    Google Scholar 

References

  1. Гохберг И.Ц., Крейн М.Г. Теория вольтерровых операторов в гильбертовом пространстве и ее приложения. М., Нау-ка, 1967.

    Google Scholar 

  2. Сахнович Л.А. Факториэация операторов в L2 (a,b).-Функц.анал. и его прил., 1979, 13, вып.З, 40–45.

    Google Scholar 

  3. Сахнович Л.А. Об интегральном уравнении с ядром, эависяшим от раэности аргументов.-Матем.исследования, Кищинев, 1973, 8, No 2, 138–146.

    Google Scholar 

  4. Крейн М.Г. Континуальные аналоги предложений о многочленах, ортогональных на единичной окружности.-Докл.АН СССР, 1955, 106, No 4, 637–640.

    Google Scholar 

  5. Сахнович Л.А. О факториэации передаточной оператор-функции.-Докл.АН СССР, 1976, 226, No 4.

    Google Scholar 

  6. Ливщиц М.С. Операторы, колебания, волны. Открытые системы. М., Наука, 1966.

    Google Scholar 

  7. Потапов В.П. Мультипликативная структура γ-нерастя-гиваюших матриц-функций.-Труды Моск.матем.о-ва, 1955, 4, 125–136.

    Google Scholar 

References

  1. Faddeev L. Integrable models in 1 + 1 dimensional quantum field theory. CEN-SACLAY preprint S.Ph.T./82/76.

    Google Scholar 

  2. Рещетихин Н.Ю., Фаддеев Л.Д. Гамильтоновы структуры для интегрируемых моделей теории поля.-Теор.Мат.Фиэ., 1983, 57, No 1.

    Google Scholar 

References

  1. Prössdorf S. Einige Klassen singulärer Gleichungen.-Berlin, 1974.

    Google Scholar 

  2. Гохберг И.Ц., Фельдман И.А. Уравнения в свертках и проекционные методы их рещения. М., "Наука", 1971.

    Google Scholar 

  3. Birkhoff G.D. Math.Ann., 1913, 74, 122–138.

    MathSciNet  CrossRef  Google Scholar 

  4. Гохберг И.Ц., Лайтерер Ю. Обшие теоремы о факториэации оператор-функций относительно контура I. Голоморфные функции.-Асtа Sci.Math., 1973, 34, 103–120; и. Обобшения.-Acta Sci.Math., 1973, 35, 39–59.

    Google Scholar 

  5. Гохберг И.Ц. Задача факториэации оператор-функций.-Иэв. АН СССР, сер.матем., 1964, 28, No 5, 1055–1082.

    Google Scholar 

  6. Лайтерер Ю. О факториэации матриц и оператор функций. Сообш.АН Груэ.ССР, 1977, 88, No 3, 541–544.

    Google Scholar 

References

  1. Бириая М.Щ., Солоияя M.З. Замечания о функции спект-рального сдвига.-Записки научи.семин. ЛОМИ, 1972, 27, 33–46

    Google Scholar 

  2. Бирмая М.Щ. Двойные операторные интегралы Стилтьеоа Щ. Предельный переход под энаком интеграла.-Проблемы мат. фиэики, иэд. ЛГУ, 1973, 6, 27–53.

    Google Scholar 

  3. Крейя М.Г. О некоторых новых исследованиях по теории воэму-шекий самосопряженных операторов. В сб.: "Первая летняя математи-ческ. щкола" I, Киев, 1964, 103–187.

    Google Scholar 

  4. Далецкий Ю.Л., Креин С.Г. Интегрирование и дифференцирование зрмитовых операторов и приложение к теории воэмушений.-Труды семин. по функц.аналиэу, Воронеж, 1956, т.1, 81–105.

    Google Scholar 

  5. Пеллер В.В. Операторы Ганкеля класса γp, и их приложения (рациональная аппроксимация, гауссовские процессы, проблемы мажо-рации операторов).-Матем. сборник, 1980,113, No 4, 539–581.

    Google Scholar 

  6. Peller V.V. Vectorial Hankel operators, commutators and related operators of the Schatten-von Neumann class γp.-Integr. Equat. and Oper. Theory, 1982, 5, N 2, 244–272.

    MathSciNet  MATH  CrossRef  Google Scholar 

  7. Фарфоровская Ю.Б. Оценка нормы f(В)−f(А) для самосопряжённых операторов А и В.-Записки научн.семин.ЛОМИ, 1976, 56, 143–162.

    Google Scholar 

References

  1. Dixmier J. Les C*-algèbres et leurs représentations Paris, Gauthier-Villard, 1969

    Google Scholar 

  2. Halmos P. Two subspaces.-Trans.Amer.Math.Soc., 1969, 144, 381–389.

    MathSciNet  MATH  CrossRef  Google Scholar 

  3. Coburn L. C*-algebras, generated by semigroups of isometries.-Trans.Amer.Math.Soc., 1969, 137, 211–217.

    MathSciNet  Google Scholar 

  4. Apostol C. On the norm-closure of nilpotents. III.-Rev. Roum.Math.Pures Appl., 1976, 21, N 2, 143–153.

    MathSciNet  MATH  Google Scholar 

  5. Apostol C., Foias C., Voiculescu D. On strongly reductive algebras.-ibid., 1976, 21, N 6, 611–633.

    MathSciNet  MATH  Google Scholar 

  6. Верщик А.М. Счетные группы, блиэкие к конечным.-В кн.: Гриялиф. Инвариантное среднее на топологических группах. М., Мир, 1973 (Revised English version will be published in "Selecta Mathe-matica Societica", 1983. "Amenability and approximation of infinite groups").

    Google Scholar 

  7. Rosenberg J. Amenability of cross products of C*-algebras.-Commun.Math.Phys., 1977, 57, N 2, 187–191.

    MATH  CrossRef  Google Scholar 

  8. Арэуманян В.А., Берщих А.М. Фактор-представлен ия скрешенного проиэведения коммутативной С*-алгебры и полугруппы ее зндоморфиэмов.-Докл. АН СССР, 1978, 238, No 3, 511–516.

    Google Scholar 

  9. Sz-Nagy B, Foiaş C. Harmonic analysis of operators on Hilbert space Amsterdam — Budapest, 1970

    Google Scholar 

  10. Гохберг И.Ц., Крейя М.Г. Теория вольтерровых операторов в гильбертовом пространстве и ее приложения. M., Наука,1967.

    Google Scholar 

  11. Davie A. Invariant subspaces for Bishop's operator-Bull London Math Soc, 1974, N 6, 343–348

    Google Scholar 

References

  1. Pimsner M., Voiculescu D. Imbedding the irrational rotation C*-algebras into an AF-algebra.-J.Oper.Theory, 1980, 4, 201–210.

    MathSciNet  MATH  Google Scholar 

  2. Верщик А.М. Равномерная алгебраическая аппроксимация операторов сдвига и умножения.-Докл. АН СССР, 1981, 259, No 3, 526–529.

    Google Scholar 

  3. Верщик А.М. Теорема о марковской периодической аппроксимации в зргодической теории.-Зап.научн.семин.ЛОМИ, 1982, 115, 72–82.

    Google Scholar 

  4. Pimsner M. Imbedding the compact dynamical system. Preprint N 44, INCREST, 1982.

    Google Scholar 

  5. Connes A. An analogue of the Thom isomorphism for crossed products of a C*-algebra by an action of ℝ.-Adv. in Math., 1981, 39, 31–55.

    MathSciNet  MATH  CrossRef  Google Scholar 

  6. Effros E.G. Dimensions and C*-algebras. C.B.M.S. Region. Conf. Series, N 46, AMS, Providence, 1981.

    MATH  CrossRef  Google Scholar 

References

  1. Clark D.N. Toeplitz operators and k-spectral sets.-Indiana U.Math.J. (to appear).

    Google Scholar 

  2. Cowen M.J. and Douglas R.G. Complex geometry and operator theory.-Acta Math., 1978, 141, 187–261.

    MathSciNet  MATH  CrossRef  Google Scholar 

  3. Holbrook J.A.R. Distortion coefficients for cryptocontractions.-Linear Algebra Appl., 1977, 18, 229–256.

    MathSciNet  MATH  CrossRef  Google Scholar 

  4. Sz.-Nagy B. and Foiaş C. On contractions similar to isometries and Toeplitz operators.-Ann.Acad.Sci.Fenn.Ser.A.I., 1976, 2, 553–564.

    MathSciNet  MATH  Google Scholar 

References

  1. Peller V.V. Estimates of functions of power bounded operators on Hilbert spaces.-J.Oper.Theory, 1982, 7, N 2, 341–372.

    MathSciNet  MATH  Google Scholar 

  2. Varopoulos N.Th. Some remarks on Q-algebras.-Ann. Inst.Fourier (Grenoble), 1972, 22, 1–11.

    MathSciNet  MATH  CrossRef  Google Scholar 

  3. Varopoulos N.Th. Sur les quotiens des algèbres uniformes.-C.R.Acad.Sci.Paris, 1972, 274, A 1344–1346.

    MathSciNet  MATH  Google Scholar 

  4. Charpentier P. Q-algèbres et produits tensoriels topologiques. Thèse, Orsay, 1973.

    Google Scholar 

  5. Halmos P. Ten problems in Hilbert space.-Bull.Amer.Math.Soc., 1970, 76, N 5, 887–933.

    MathSciNet  MATH  CrossRef  Google Scholar 

  6. Sarason D. Function theory on the unit circle. Notes for lectures at Virginia Polytechnic Inst. and St.Univ., Blacksburg, 1978.

    Google Scholar 

  7. Fefferman Ch., Stein E.M. Hp spaces of several variables.-Acta Math., 1972, 129, 137–193.

    MathSciNet  MATH  CrossRef  Google Scholar 

  8. Rochberg R. A Hankel type operator arising in deformation theory.-Proc.Sympos.Pure Math., 1979, 35, N 1, 457–458.

    MATH  CrossRef  Google Scholar 

  9. Tonge A.M. Banach algebra and absolutely summing operators.-Math.Proc.Camb.Phil.Soc., 1976, 80, 465–473

    MathSciNet  MATH  CrossRef  Google Scholar 

  10. Lindenstrauss J., Pełczyn'ski A. Contribution to the theory of classical Banach spaces.-J.Funct.Anal., 1971, 8, 225–249.

    CrossRef  Google Scholar 

  11. Lindenstrauss J., Pełczyn'ski A. Absolutely summing operators in Lp-spaces and their applications-Studia Math., 1968, 29, N 3, 275–326.

    MathSciNet  Google Scholar 

  12. Shields A.L. On Möbius bounded operators. Acta Sci.Math., 1978, 40, N 3–4, 371–374.

    MathSciNet  MATH  Google Scholar 

  13. van Casteren J.A. Operators similar to unitary and self-adjoint ones.-Pacif.J.Math., 1983, 104, N 1, 241–255

    MATH  CrossRef  Google Scholar 

References

  1. Sz.-Nagy B., Foiaş C. Harmonic analysis of operators on Hilbert space. North Holland-Akademiai Kiado, Amsterdam-Budapest, 1970.

    MATH  Google Scholar 

  2. Пеллер В.В. Аналог неравенства Дж.фон Неймана для пространства LP.-Докл.АН СССР, 1976, 231, No 3, 539–542.

    Google Scholar 

  3. Peller V.V. L'inégalité de von Neumann, la dilation isométrique et l'approximation par isométries dans Lp.-C.R.Acad.Sci.Paris, 1978, 287, N 5, A 311–314.

    MathSciNet  MATH  Google Scholar 

  4. Пеллер В.В. Аналог неравенства Дж.фон Неймана, иэометрическая дилатация сжатий и аппроксимация иэометриями в пространствах иэмеримых функций.-Труды МИАН, 1981, 155, 103–150.

    Google Scholar 

  5. Coifman R.R., Rochberg R., Weiss G. Applications of transference: The Lp version of von Neumann's inequality and the Littlewood-Paley-Stein theory.-Proc.Conf.Math.Res.Inst.Oberwolfach, Intern.ser.Numer.Math., v.40, 53–63. Birkhäuser, Basel, 1978.

    MathSciNet  MATH  Google Scholar 

  6. Arazy J., Friedman J. The isometries of C n,mp into Cp.-Isr.J.Math., 1977, 26, N 2, 151–165.

    MathSciNet  MATH  CrossRef  Google Scholar 

  7. Akocoglu M.A., Suoheston L. Dilations of positive contractions on Lp spaces.-Canad.Math.Bull., 1977, 20, N 3, 285–292.

    MathSciNet  CrossRef  Google Scholar 

References

  1. Peller V.V. Estimates of operator polynomials on the Schatten — von Neumann classes.-This "Collection", Problem 4 25

    Google Scholar 

References

  1. Ruston A.F. Operators with a Fredholm theory.-J.London Math.Soc., 1954, 29, 318–326.

    MathSciNet  MATH  CrossRef  Google Scholar 

  2. West T.T. The decomposition of Riesz operators.-Proc.London Math.Soc., III Series, 1966, 16, 737–752.

    MathSciNet  MATH  CrossRef  Google Scholar 

  3. Smyth M.R.F. Riesz theory in Banach algebras.-Math.Zeit., 1975, 145, 145–155.

    MathSciNet  MATH  CrossRef  Google Scholar 

References

  1. Крупник Н.Я., Фельдман И.А. Об обратимости некоторых фредгольмовых операторов.-Иэв.АН МССР, сер.фиэ.-техн. и мат.наук, 1982, No 2, 8–14.

    Google Scholar 

  2. Гохберг И.Ц., Крупник Н.Я. Сингулярные интегральные операторы с кусочно-непрерывными козффициентами и их символы.-Иэв.АН СССР, сер.матем., 1971, 35, No 4, c.940–964.

    Google Scholar 

  3. Крупник Н.Я..Фельдман И.А. О невоэможности введения матричного символа на некоторых алгебрах операторов.-В кн.: Линейные операторы и интегральные уравнения. Кищинёв, Щтиинца, 1981, 75–85.

    Google Scholar 

  4. Ломоносов В.И. Об инвариантных подпространствах семай-ства операторов, коммутируюших с вполне непрерывным.-Функц.аналиэ и его прилож., 1973, 7, вып.З, 55–56.

    Google Scholar 

  5. Маркус А.С., Фельдман И.А. Об алгебрах, порожденных односторонне обратимыми операторами.-В кн.: Исследования по дифференциальным уравнениям.Кищинёв, Щтиинца, 1983, 42–46.

    Google Scholar 

References

  1. Крупник Н.Я. К вопросу о нормальном раэрещимости и индексе сингулярных интегральных уравнений.-Уч.эап.Кищиневского университета, 1965, 82, 3–7.

    Google Scholar 

  2. Гохберг И.Ц., Фельдман И.А. Уравнения в свертках и проекционные методы их рещения. М., Наука, 1971.

    Google Scholar 

  3. Маркус А.С., Фельдман И.А. Об индексе операторной матрицы.-Фующ.анал. и его прил., 1977, 11, No 2, 83–84.

    Google Scholar 

  4. Гохберг И.Ц., Крейн М.Г. Введение в теорию линейных несамосопряженных операторов в гильбертовом пространстве. М., Наука, 1965.

    Google Scholar 

  5. Michlin S.G., Prössdorf S. Singuläre Integrałoperatoren. Berlin: Akademie — Verlag, 1980.

    MATH  Google Scholar 

  6. Seeley R.T. Singular integrals on compact manifolds.-Amer.J.Math., 1959, 81, 658–690.

    MathSciNet  MATH  CrossRef  Google Scholar 

  7. Параска В.И. Об асимптотике собственных и сингулярных чисел линейных операторов, повыщаюших гладкость.-Матем.сборник, 1965, 68 (110), 623–631.

    Google Scholar 

  8. Крупник Н.Я. Некоторые обшие вопросы теории одномерных сингулярных операторов с матричными козффициентами.-В кн.: Несамосопряженные операторы. Кищинев, Щтиинца, 1976, 91–112.

    Google Scholar 

  9. Крупник Н.Я. Условия сушествования n-символа и достаточного набора n-мерных представлений банаховой алгебры.-В кн.: Линейные операторы. Кищинев, Щтиинца, 1980, 84–97.

    Google Scholar 

  10. Василевский Н.Л., Трухильо Р. К теории Ф-операторов в матричных алгебрах операторов. В кн.: Линейные операторы. Кищинев, Щтиинца, 1980, 3–15.

    Google Scholar 

References

  1. Гохберг И.Ц., Крейн М.Г. Введение в теорию линейных несамосопряженных операторов. М., Наука, 1965.

    Google Scholar 

  2. Бирман М.Щ., Соломяк М.З. Оценки синтулярннх чисел интегральных операторов.-Успехи матем.наук, 1977, XXXII, No 1(193) 17–84.

    Google Scholar 

  3. Simon B. Trace ideals and their applications.-London Math.Soc.Lect.Note Series, 35, Cambridge Univ.Press, 1979.

    Google Scholar 

  4. Triebel H. Interpolation theory. Function spaces. Differential operators. Berlin, 1978.

    Google Scholar 

  5. Бирман М.Щ., Соломяк М.З. aКомпактные операторы со степенной асимптотикой сингулярных чисел.-Зап.научн.сеющ.ЛОМИ, 1983, 126, 21–30.

    Google Scholar 

  6. Brown L., Douglas R., Fillmore P. Unitary equivalence modulo the compact operators and extensions of C*-algebras.-Leot.Notes in Math., 1973, 345, 58–128.

    MathSciNet  MATH  CrossRef  Google Scholar 

References

  1. Azoff E., Davis Ch. Perturbation of spectrum of self-adjoint operators. To appear.

    Google Scholar 

  2. Bhatia R. Analysis of spectral variation and some inequalities.-Trans.Amer.Math.Soc. 1982, 272, 323–331.

    MathSciNet  MATH  CrossRef  Google Scholar 

  3. Bhatia R., Davis Ch. A bound for the spectral variation of a unitary operator-Linear Multilinear Alg. To appear.

    Google Scholar 

  4. Bhatia R., Davis Ch., McIntosh A. Perturbation of spectral subspaces and solution of linear operator equations.-Linear Alg. and Appl. To appear.

    Google Scholar 

  5. Mirsky L. Symmetric gauge functions and unitarily invariant norms.-Quarterly J. Math. Oxford Ser. 2, 1960, 11, 50–59.

    MathSciNet  MATH  CrossRef  Google Scholar 

  6. Sunder V.S. Distance between normal operators.-Proc.Amer.Math.Soc. 1982, 84, 483–484.

    MathSciNet  MATH  CrossRef  Google Scholar 

  7. Weyl H. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen.-Math.Ann., 1912, 71, 441–479.

    MathSciNet  MATH  CrossRef  Google Scholar 

References

  1. Макаров Н.Г.-Докл.АН СССР (tо арреаг).

    Google Scholar 

  2. Makarov N.G., Vasjunin V.I. A model for noncontractions and stability of the continuous spectrum. Complex Analysis and Spectral Theory, Lecture Notes in Math., 1981, 864, 365–412.

    MathSciNet  MATH  CrossRef  Google Scholar 

  3. Sarason D. Invariant subspaces and unstarred operator algebras.-Pacific J.Math., 1966, 17, 511–517.

    MathSciNet  MATH  CrossRef  Google Scholar 

  4. Sarason D. Weak-star density of polynomials.-J.reine und angew.Math., 1972, 252, 1–15.

    MathSciNet  MATH  Google Scholar 

  5. Никольский Н.К. О воэмушениях спектра унитарных операторов.-Матем.эаметки, 1969, 5, 341–349.

    Google Scholar 

  6. Carleson L. On the distortion of sets on a Jordan curve under conformal mapping.-Duke Math.J., 1973, 40, 547–559.

    MathSciNet  MATH  CrossRef  Google Scholar 

References

  1. Apostol C., Foiaş C., Voiculescu D. Some results on non-quasitriangular operators VI.-Rev.Roum.Math.Pures Appl. 1973, 18, 1473–1494.

    MathSciNet  MATH  Google Scholar 

  2. Arveson W.B. A note on essentially normal operators.-Proc.Royal Irish Acad. 1974, 74, 143–146.

    MathSciNet  MATH  Google Scholar 

  3. Brown L.G., Douglas R.G., Fillmore P.A. Unitary equivalence modulo the compact operators and extensions of C*-algebras. Lect.Notes in Math., 1973, 345, 58–128.

    MathSciNet  MATH  CrossRef  Google Scholar 

  4. Carey R.W., Pincus J.D. Commutators, symbols and determining functions.-J.Funct.Anal. 1975, 19, 50–80.

    MathSciNet  MATH  CrossRef  Google Scholar 

  5. Clancey K. Seminormal operators. Lect.Notes in Math., 1979, 742.

    Google Scholar 

  6. Helton J.W., Howe R. Integral operators, commutator traces, index and homology. Lect.Notes in Math. 1973, 345, 141–209.

    MathSciNet  MATH  CrossRef  Google Scholar 

  7. Halmos P.R. Quasitriangular operators.-Acta Sci.Math. (Szeged), 1968, 29, 283–293.

    MathSciNet  MATH  Google Scholar 

  8. Pasnicu C. Weighted shifts as direct summands mod γ2 of normal operators. INCREST preprint 1982.

    Google Scholar 

  9. Pearcy C. Some reoent developments in operator theory. CBMS, Regional Conference Series in Mathematics no.36, Prodidence, Amer.Math.Soc., 1978.

    Google Scholar 

  10. Pincus J.D. Commutators and systems of integral equations, I.-Acta Math., 1968, 121, 219–249.

    MathSciNet  MATH  CrossRef  Google Scholar 

  11. Voiculescu D. Some extensions of quasitriangularity.-Rev.Roum.Math.Pures Appl., 1973, 18, 1303–1320.

    MathSciNet  MATH  Google Scholar 

  12. Voiculescu D. Some results on norm-ideal perturbations of Hilbert space operators.-J.Operator Theory, 1979, 2, 3–37.

    MathSciNet  MATH  Google Scholar 

  13. Voiculescu D. Remarks on Hilbert-Schmidt perturbations of almost-normal operators.-In: Topics in Modern Operator Theory, Birkhäuser 1981.

    Google Scholar 

References

  1. Kato T. Perturbation theory for linear operators, Springer-Verlag, New York Inc., 1967.

    Google Scholar 

  2. Putnam C.R. Commutation properties of Hilbert space operators and related topics, Ergebnisse der Math., 36, Springer-Verlag, New York Inc., 1967.

    Google Scholar 

  3. Putnam C.R. A polar area inequality for hyponormal specra.-J.Operator Theory, 1980, 4, 191–200.

    MathSciNet  MATH  Google Scholar 

  4. Putnam C.R. Absolute continuity of polar factors of hyponormal operators.-Amer.J.Math., Suppl. 1981, 277–283.

    Google Scholar 

  5. Clancey K.F., Putnam C.R. Nonnegative perturbations of selfadjoint operators.-J.Funct.Anal., 1983, 51 (to appear).

    Google Scholar 

  6. Putnam C.R. Spectra of polar factors of hyponormal operators.-Trans.Amer.Math.Soc., 1974, 188, 419–428.

    MathSciNet  MATH  CrossRef  Google Scholar 

  7. Putnam C.R. Absolute values of hyponormal operators with asymmetric spectra.-Mich.Math.Jour., 1983, 30 (to appear).

    Google Scholar 

References

  1. Halmos P.R. A Hilbert space problem book, van Nostrand Co., 1967.

    Google Scholar 

  2. Clancey K.F., Putnam C.R. The local spectral behavior of completely subnormal operators.-Trans.Amer.Math.Soc., 1972, 163, 239–244.

    MathSciNet  MATH  CrossRef  Google Scholar 

  3. Gamelin T.W. Uniform algebras, Prentice-Hall, Inc., 1969.

    Google Scholar 

  4. Putnam C.R. Peak sets and subnormal operators.-Ill. Jour.Math., 1977, 21, 388–394.

    MathSciNet  MATH  Google Scholar 

  5. Lautzenheiser R.G. Spectral sets, reducing subspaces, and function algebras, Thesis, Indiana Univ., 1973.

    Google Scholar 

  6. Putnam C.R. Rational approximation and Swiss cheeses.-Mich Math.Jour., 1977, 24, 193–196.

    MathSciNet  MATH  CrossRef  Google Scholar 

  7. Davie A.M., Øksendal B.K. Rational approximation on the union of sets.-Proc.Amer.Math.Soc., 1971, 29, 581–584.

    MathSciNet  MATH  CrossRef  Google Scholar 

  8. Витущкин А.Г. Аналитическая емкость множеств в эадачах теории приближений.-Успехи матем. наук, 1967, 22, No 6, 141–199.

    Google Scholar 

  9. Zalcman L. Analytic capacity and rational approximation. Lecture notes in mathematics, 50, Springer-Verlag, 1968.

    Google Scholar 

  10. Davie A.M. Analytic capacity and appriximation problems.-Trans.Amer.Math.Soc., 1972, 171, 409–444.

    MathSciNet  MATH  CrossRef  Google Scholar 

  11. Garnett J. Analytic capacity and measure, Lecture notes in mathematics, 297, Springer-Verlag, 1972.

    Google Scholar 

  12. Долженко Е.П. О приближении на эамкнутых областях и о нуль-множествах.-Докл.АН СССР, 1962, 143, No 4, 771–774.

    Google Scholar 

  13. Putnam C.R. Spectra and measure inequalities.-Trans. Amer.Math.Soc., 1977, 231, 519–529.

    MathSciNet  MATH  CrossRef  Google Scholar 

  14. Putnam C.R. An inequality for the area of hyponormal spectra.-Math.Zeits., 1970, 116, 323–330.

    MathSciNet  MATH  CrossRef  Google Scholar 

References

  1. Johnson B., Williams J. The range of normal derivations.-Pacif.J.Math., 1975, 58, 105–122.

    MathSciNet  MATH  CrossRef  Google Scholar 

  2. Williams J. Derivation ranges: open problems.-In: Top Modern Oper.Theory, 5 Int.Conf.Oper.Theory, Timişoara Birkhäuser 1981, 319–328.

    Google Scholar 

  3. Yang Ho. Commutants and derivation ranges.-Tohoku Math J., 1975, 27, 509–514.

    MATH  CrossRef  Google Scholar 

  4. Putnam C. Commutation properties of Hilbert space operators and related topics. Springer-Verlag, Ergebnisse 36, 1967.

    Google Scholar 

  5. Щульман В. С. Об операторах умножения и следах коммутаторов.-Записки научн.семин.ЛЩИ, (tо арреаг).

    Google Scholar 

References

  1. Anderson J.H. Derivations, commutators and essential numerical range. Dissertation, Indiana University, 1971.

    Google Scholar 

  2. Bunce J.W. Finite operators and amenable C*-algebras.-Proc.Amer. Math.Soc., 1976, 56, 145–151.

    MathSciNet  MATH  Google Scholar 

  3. Bunce J.W., Deddens J.A. C*-algebras generated by weighted shifts.-Indiana Univ.Math.J., 1973, 23, 257–271.

    MathSciNet  MATH  CrossRef  Google Scholar 

  4. Halmos P.R. Ten problems in Hilbert space.-Bull.Amer. Math.Soc., 1970, 76, 887–933.

    MathSciNet  MATH  CrossRef  Google Scholar 

  5. Herrero D.A. On quasidiagonal weighted shifts and approximation of operators.-Indiana Univ.Math.J. (To appear).

    Google Scholar 

  6. Voiculescu D. A non-commutative Weyl-von Neumann theorem.-Rev.Roum.Math.Pures et Appl., 1976, 21, 97–113.

    MathSciNet  MATH  Google Scholar 

  7. Williams J.P. Finite operators.-Proc.Amer.Math.Soc., 1970, 26, 129–136.

    MathSciNet  MATH  CrossRef  Google Scholar 

References

  1. Kamowitz H., Scheinberg S. The spectrum of automorphisms of Banach algebras.-J.Funct.An., 1969, 4, N-2, 268–276.

    MathSciNet  MATH  CrossRef  Google Scholar 

  2. Johnson B.E. Automorphisms of commutative Banach algebras.-Proc.Am.Math.Soc., 1973, 40, N 2, 497–499.

    MathSciNet  MATH  CrossRef  Google Scholar 

  3. Леви Р.Н. Новое докаэательство теоремы об автоморфиэмах банаховых алгебр.-Вестн.МГУ, сер.матем., мех., 1972, No 4, 71–72.

    Google Scholar 

  4. Леви Р.Н. Об автоморфиэмах банаховых алгебр.-функц.аналиэ и его црил., 1972, 6, No 1, 16–18.

    Google Scholar 

  5. Леви Р.Н. О совместном спектре некоторых коммутируюших операторов. Диссертация, М., 1973.

    Google Scholar 

  6. Горин Е.А. Как выглядит спектр зндоморфиэма диск-алгебры?-Зап.научн.семин.ЛОМИ, 1983, 126, 55–68.

    Google Scholar 

  7. Scheinberg S. The spectrum of an automorphism.-Bull.Amer.Math.Soc., 1972, 78, N 4, 621–623.

    MathSciNet  MATH  CrossRef  Google Scholar 

  8. Scheinberg S. Automorphisms of commutative Banach algebras.-Problems in analysis, Princeton Univ.Press., Princeton 1970, 319–323.

    Google Scholar 

  9. Горин Е.А. О спектре зндоморфиэмов равномерных алгебр.-В кн.: Теэисы Докл.конфер. "Теоретические и прикладные вопросы математики" Тарту, 1980, 108–110.

    Google Scholar 

  10. Китовер А.К. О спектре автоморфиэмов с весом и теореме Камоввда-Щайнберга.-функц.аналиэ и его прил., 1979, 13,NoNo 1, 70–71.

    Google Scholar 

  11. Китовер А.К. Спвктральнне свойства автоморфиэмов с весом в равномерных алгебрах.-Зап.научн.семин.ЛОМИ, 1979, 92, 288–293.

    Google Scholar 

  12. Китовер А.К. Спектральные свойства гомоморфиэмов с весом в алгебрах непрерывных функций и их приложения.-Зап.научн.се-МИН.ДОМИ, 1982, 107, 89–103.

    Google Scholar 

  13. Китовер А.К. Об операторах в С(1), индуцированных гладкими отображениями.-Функц.аналиэ и его прил., 1982, 16, No 3, 61–62.

    Google Scholar 

  14. Kamowitz H. The spectra of endomorphisms of the disk algebra.-Pacif.J.Math., 1973, 46, N 2, 433–440.

    MathSciNet  MATH  CrossRef  Google Scholar 

  15. Kamowitz H. The spectra of endomorphisms of algebras of analytic functions.-Pacif. J.Math. 1976, 66, N 2, 433–442.

    MathSciNet  MATH  CrossRef  Google Scholar 

  16. Kamowitz H. Compact operators of the form u C ϕ.-Pacif.J.Math., 1979, 80, N 1, 205–211.

    MathSciNet  MATH  CrossRef  Google Scholar 

  17. Лебедев А.В. Об операторах типа вэвещенного сдвига. Диссертация, Минск, 1980.

    Google Scholar 

  18. Антоневич А.Б. Операторы со сдвигом, порожденным действием компактной группы Ли.-Сибирск.матем.журн. 1979, 20, No 3, 467–478.

    Google Scholar 

  19. Китовер А.К. Операторы подстановки с весом в банаховых модулях над равномерными алгебрами (в печати).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1984 Springer-Verlag

About this chapter

Cite this chapter

Simon, B. et al. (1984). Operator theory. In: Havin, V.P., Hruščëv, S.V., Nikol'skii, N.K. (eds) Linear and Complex Analysis Problem Book. Lecture Notes in Mathematics, vol 1043. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0072187

Download citation

  • DOI: https://doi.org/10.1007/BFb0072187

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12869-4

  • Online ISBN: 978-3-540-38758-9

  • eBook Packages: Springer Book Archive