Advertisement

A nonlinear half-space problem in the kinetic theory of gases

  • Tor Ytrehus
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1048)

Abstract

The problem of the steady emission of a monatomic gas from a plane boundary into a half-space under finite pressure is considered. The use of a trimodal approximating distribution function and moments derived from the nonlinear Boltzmann equation leads to a four-moment system that can be solved exactly. The solution is naturally arrived at in two steps: First, an algebraic connection problem between the nonequilibrium gas state at the boundary and the external equilibrium state is solved. Then, the actual relaxation from the one state to the other is computed. For Maxwell molecules this latter problem has a particularly simple solution, but only for flow conditions such that the macroscopic gas velocity away from the boundary remains subsonic.

Keywords

Boltzmann Equation Moment Equation Collision Term Knudsen Layer Maxwell Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Cercignani, "Mathematical Methods in Kinetic Theory," Plenum Press, New York, and McMillan, London (1969).CrossRefzbMATHGoogle Scholar
  2. 2.
    C. Cercignani, "Theory and Application of the Boltzmann Equation," Scottish Academic Press, Edinbourgh, and Elsevier, New York (1975).zbMATHGoogle Scholar
  3. 3.
    H. M. Mott-Smith, Phys. Rev. 82, 892 (1951).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    C. H. Liu and L. Lees, in "Rarefied Gas Dynamics," p. 391, L. Talbot, ed. Academic Press, New York-London (1961).Google Scholar
  5. 5.
    S. I. Anisimov, Soviet Physics JETP, 27, 182 (1969).ADSGoogle Scholar
  6. 6.
    A. V. Luikov, T. L. Perleman and S. I. Anisimov, Int. J. Heat and Mass Transfer, 14, 177 (1971).CrossRefGoogle Scholar
  7. 7.
    T. Ytrehus, J. J. Smolderen and J. Wendt, Entropie, 42, 33 (1971).Google Scholar
  8. 8.
    T. Ytrehus, in "Rarefied Gas Dynamics," B.4, M. Becker and M. Fiebig, eds. DVLFR Press, Portz-Wahn (1974).Google Scholar
  9. 9.
    T. Ytrehus, von Karman Institute Technical Note 112, Rhode-St. Genese (1975).Google Scholar
  10. 10.
    T. Ytrehus, in "Rarefied Gas Dynamics," p. 1197, J. L. Potter, ed., AIAA, New York (1977).Google Scholar
  11. 11.
    M. N. Kogan and N. K. Makashev, Fluid Dynamics, 6, 913 (1974).ADSCrossRefGoogle Scholar
  12. 12.
    M. Murakami and K. Oshima, in "Rarefied Gas Dynamics," F.6, M. Becker and M. Fiebig, eds., DFVLR Press, Portz-Wahn (1974).Google Scholar
  13. 13.
    S. M. Yen and T. J. Akai, in "Rarefied Gas Dynamics," p. 1175, J. L. Potter, ed., AIAA, New York (1977).Google Scholar
  14. 14.
    T. Tran Cong and G. A. Bird, Phys. Fluids, 21, 327 (1978).ADSCrossRefGoogle Scholar
  15. 15.
    C. Cercignani, in "Mathematical Methods in Kinetic Theory of Gases," p. 129, D. C. Pack and H. Neunzert, eds., Peter D. Lang, Frankfurt A. M., Bern, Cirencester/U.K. (1980).Google Scholar
  16. 16.
    M. D. Arthur and C. Cercignani, ZAMP, 31, 634 (1980).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    C. E. Siewert and J. R. Thomas, Jr., ZAMP, 32, 421, (1981).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    C. E. Siewert and J. R. Thomas, Jr., ZAMP, 33, 473, (1982).CrossRefGoogle Scholar
  19. 19.
    C. Cercignani, in "Rarefied Gas Dynamics," p. 305, S. S. Fisher, ed., AIAA, New York (1981).Google Scholar
  20. 20.
    T. Ytrehus and J. Alvestad, in "Rarefied Gas Dynamics," p. 330, S. S. Fisher, ed., AIAA, New York (1981).Google Scholar
  21. 21.
    M. N. Kogan, "Rarefied Gas Dynamics," Plenum Press, New York (1969).CrossRefGoogle Scholar
  22. 22.
    W. G. Vincenti and C. H. Kruger, Jr., "Introduction to Physical Gas Dynamics," p. 364, J. Wiley, New York-London (1965).Google Scholar
  23. 23.
    T. Ytrehus, "Theoretical and Experimental Study of a Kinetic Boundary Layer Produced by Effusion from a Perforated Wall," Doctoral Thesis, Vrije Universiteit Brussel, Brussels (1975).Google Scholar
  24. 24.
    L. H. Holway, Jr., in "Rarefied Gas Dynamics," p. 193, J. H. dee Leew, ed., Academic Press, New York-London (1965).Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Tor Ytrehus
    • 1
  1. 1.The Norwegian Institute of TechnologyTrondheim - NTHNorway

Personalised recommendations