The Boltzmann equation and its properties

Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1048)


Boltzmann Equation Mild Solution Specular Reflection Iteration Scheme Local Existence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Footnotes

  1. 1.
    We adopt the notation and techniques described by James J. Duderstadt and William K. Martin ‘Transport Theory" (John Wiley, New York, 1979). Chapter 3. This textbook contains a number of references to the earlier literature.zbMATHGoogle Scholar
  2. 2.
    The treatment follows that of Kerson Huang "Statistical Mechanics" (John Wiley, New York, 1963) Chapter 4.Google Scholar
  3. 4.
    Joel L. Lebowitz and Peter G. Bergmann, Ann. Phys. (N.Y.) 1, 1(1957).ADSMathSciNetCrossRefGoogle Scholar
  4. 5.
    H. Grad in Handbuch der Physik, Vol. XII. "Thermodynamics of Gases" (Springer-Verlag, Berlin, 1968).Google Scholar
  5. 6.
    Sometimes, in order to compress notation, we shall use the symbol (\(\vec w\)) to indicate the molecule whose velocity is \(\vec w\).Google Scholar
  6. 7.
    See, for example, P. F. Zweifel "Reactor Physics" (McGraw-Hill, New York, 1973) Appendix E.Google Scholar
  7. 8.
    H. Goldstein. "Classical Mechanics" (Addison-Wesley, Cambridge, Mass., 1953) page 82.Google Scholar
  8. 9.
    Michael Reed and Barry Simon "Methods of Modern Mathematical Physics-II. Fourier Analysis, Self-Adjointness (Academic Press, New York, 1975) Sec. X. 13.zbMATHGoogle Scholar
  9. 10.
    Walter Rudin. "Real and Complex Analysis" (McGraw-Hill, New York, 1966) page 21.zbMATHGoogle Scholar
  10. 11.
    T. Carleman. "Problemès mathématiques dans la théorie cinétique des gaz," (Almqvist and Wiksells, Uppsala. 1957).zbMATHGoogle Scholar
  11. 12.
    E. Wild, Proc. Camb. Phil. Soc. 47, 602 (1951).ADSMathSciNetCrossRefGoogle Scholar
  12. 13.
    D. Morgenstern, Proc. Nat. Acad. Sci. U.S.A. 40, 719 (1954).ADSMathSciNetCrossRefGoogle Scholar
  13. 14. (a).
    Lief Arkeryd Arch. Rat. Mech. and Anal. 95, 1 (1972)ADSMathSciNetGoogle Scholar
  14. 14. (b)
    17 (1972). c.f. alsoGoogle Scholar
  15. 14. (c)
    "Intermolecular Forces of Infinite Range and the Boltzmann Equation," Chalmers University of Technology (Sweden) preprint (1970).Google Scholar
  16. 15.
    A. Ja. Povzner, Mat. Sbornik 58, 65 (1962).MathSciNetGoogle Scholar
  17. 16.
    G. Di Blasio, Boll. U.M.I. 8, 127 (1973); Comm. Math. Phys. 38, 331 (1974).MathSciNetGoogle Scholar
  18. 17.
    Shmuel Kaniel and Marvin Shinbrot, Comm. Math. Phys. 58, 65 (1978).ADSMathSciNetCrossRefGoogle Scholar
  19. 18.
    Alexander Glikson, Arch. Rat. Mech. Anal. 45, 35 (1972); Bull. Australian Math. Soc. 16, 321 (1977).MathSciNetCrossRefGoogle Scholar
  20. 19.
    D. Morgenstern, J. Rat. Anal. 4, 533 (1955).MathSciNetGoogle Scholar
  21. 20.
    Barry Simon "The P(φ)2 Euclidean (Quantum) Field Theory" (Princeton Univ. Press, Princeton, N.J., 1974).Google Scholar
  22. 21.
    Michael Reed and Barry Simon "Methods of Modern Mathematical Physics—I; Functional Analysis" (Academic Press, New York, 1972) p. 151.zbMATHGoogle Scholar
  23. 22.
    The proof of Lemma 2 requires that R(t1)R(t2) = R(t2)R(t1), otherwise, the "time-ordered" exponential must be used. cf. Chapter VI for a situation in which this is necessary.Google Scholar
  24. 24.
    H. Grad in "Applications of Nonlinear Partial Differential Equations in Mathematical Physics" (Amer. Math. Soc., Providence, R.I., 1965) p. 154.Google Scholar
  25. 25.
    cf. Ref. 5, p. 237.Google Scholar
  26. 26.
    cf. Ref. 24, Appendix.Google Scholar
  27. 27.
    cf. Ref. 2, p. 131.Google Scholar
  28. 28.
    H. Grad, Comm. Pure Appl. Math. XVIII, 315 (1965).Google Scholar
  29. 29.
    H. Grad, Phys. Fluids 6, 147 (1963).ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Y. Shizuta and K. Asano, Proc. Japan Acad. 53, 3 (1977).MathSciNetCrossRefGoogle Scholar
  31. 31.
    T. Kato "Perturbation Theory for Linear Operators" (Springer-Verlag, New York, 1966) Chapter IX.CrossRefzbMATHGoogle Scholar
  32. 32.
    T. Nishida and K. Imai, Publ. RIMS Kyoto Univ. 229 (1976).Google Scholar
  33. 33.
    J. P. Guraud, Coll. Int. C.N.R.S. No. 236.Google Scholar
  34. 34.
    Y. Shizuta, "On the Classical Solutions of the Boltzmann Equation." Preprint.Google Scholar
  35. 35.
    S. Ukai, Proc. Japan Acad. 50, 179 (1974); C. R. Acad. Sci. Paris 282, A-317 (1976).MathSciNetCrossRefGoogle Scholar
  36. 36.
    C. Cercignani, W. Greenberg and P. F. Zweifel, J. Stat. Phys. 20, 449 (1979).ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Herbert Spohn, J. Stat. Phys. 20, 463 (1979).ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    W. Greenberg, J. Voigt and P. F. Zweifel, J. Stat. Phys. 21, 649 (1979).ADSMathSciNetCrossRefGoogle Scholar
  39. 38a.
    cf. Sec. 12, Lemma 2. Morgenstern's operator R(t;f) is a multiplicative operator, and thus the evolution is given simply by \(\int\limits_0^t {R(t;f(\tau ))d\tau }\) In our case, T(n;t1,t2) is generated by A + v (n) and is hence a non-diagonal matrix, which is why we find it necessary to introduce "time-ordering." Somehow, Morgenstern has been able to circumvent this difficulty by working along the free trajectories.Google Scholar
  40. 39.
    See Ref. 31, pp. 487 ff.Google Scholar
  41. 40.
    J. P. Ginzburg, Am. Math. Soc. Translations, Series 2, 96, 189 (1970).Google Scholar
  42. 41.
    Ref. 21, Sec. VIII.8.Google Scholar
  43. 42.
    J. Voigt, T.T.S.P. 8, 17 (1979).MathSciNetGoogle Scholar
  44. 43.
    M. Moreau, J. Math. hys. 19, 2494 (1978).ADSMathSciNetGoogle Scholar
  45. 44.
    J. Voigt "H-theorem for Boltzmann Type Equations." Preprint, Laboratory for Transport Theory and Mathematical Physics, Va. Polytech. Inst. (1979).Google Scholar
  46. 45.
    H. L. Royden "Real Analysis" (MacMillan, London, 1968) p. 110.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

There are no affiliations available

Personalised recommendations