Time-dependent linear transport theory

Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1048)


Positive Operator Test Particle Banach Lattice Continuous Semigroup Transport Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ADAMS R.A. [1975], Sobolev Spaces, Academic Press, New York (N.Y.)zbMATHGoogle Scholar
  2. DERNDINGER R. [1980], Über das Spektrum positiver Generatoren, Thesis, University of Tübingen, West GermanyzbMATHGoogle Scholar
  3. DUNFORD, N. and SCHWARTZ J.T. [1958], Linear Operators, 3 Volumes, Interscience Publ., Inc., New York (N.Y.)zbMATHGoogle Scholar
  4. GOHBERG I.C. [1951], On Linear Operators Depending Analytically on a Parameter, Doklady Akad. Nauk SSSR 78, 629–632, (in Russian).MathSciNetGoogle Scholar
  5. GOLDBERG S. [1966], Unbounded Linear Operators, Theory and Applications, McGraw-Hill Series in Higher MathematicsGoogle Scholar
  6. GREINER G., VOIGT J., WOLFF M. [1981], On the Spectral Bound of the Generator of Semigroups of Positive Operators, J. Operator Theory 5Google Scholar
  7. GREINER G. [1980], Über das Spektrum stark stetiger Halbgruppen positiver Operatoren, Thesis, University of Tübingen, West GermanyzbMATHGoogle Scholar
  8. HELGASON S. [1980], The Radon Transform, Progress in Mathematics, Birkhäuser VerlagGoogle Scholar
  9. HALMOS P.R. [1967], A Hilbert Space Problem BookGoogle Scholar
  10. HERTLE A. [1979], Zur Radon-Transformation von Funktionen und Maßen, Thesis, University of Erlangen-Nürnberg, West-GermanyGoogle Scholar
  11. HUBER A. [1981], Spectral Analysis of the Multiple Scattering Problem in Linear Transport Theory, Thesis, Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 WIEN, AustriaGoogle Scholar
  12. KAPER H., LEKKERKERKER G., HEJTMANEK J. [1981], Spectral Methods in Linear Transport Theory, volume 3 of the series "Operator Theory, Advances and Applications", edited by I.C. Gohberg, Birkhäuser Verlag, BaselGoogle Scholar
  13. KATO T. [1966], Perturbation Theory for Linear Operators, Springer Verlag, New York (N.Y.)CrossRefzbMATHGoogle Scholar
  14. LEHNER J., WING G.M. [1955], On the Spectrum of an Asymmetric Operator Arising in the Transport Theory of Neutrons, Comm. Pure Appl. Math., 8, 217–234.MathSciNetCrossRefzbMATHGoogle Scholar
  15. PAZY A. [1974], Semigroups of Linear Operators and Applications to Partial Differential Equations, Lecture Notes of the University of Maryland, #10.Google Scholar
  16. RADON J. [1917], Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Sächs. Akad. Wiss. Leipzig, 69, 262–277.zbMATHGoogle Scholar
  17. REED M., SIMON B. [1979], Methods of Modern Mathematical Physics, 4 volumes, Academic Press, New York (N.Y.)zbMATHGoogle Scholar
  18. RIBARIC M., VIDAV I. [1969], Analytic Properties of the Inverse A(z)−1 of an Analytic Linear Operator Valued Function A(z), Archive for Rat. Mech. and Analysis 32, 298–310.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. SCHAEFER H.H. [1974], Banach Lattices and Positive Operators, Springer Verlag, New York (N.Y.)CrossRefzbMATHGoogle Scholar
  20. SCHAEFER H.H. [1980], Ordnungsstrukturen in der Operatorentheorie Jber. d. Dt. Math.-Verein. 82, 33–50.MathSciNetzbMATHGoogle Scholar
  21. SMITH K.T., SOLMON D.C., WAGNER S.L. [1977], Practical and Mathematical Aspects of the Problem of Reconstructing Objects from Radiographs, Bulletin AMS, 83, November 1977.Google Scholar
  22. SMULYAN Y. [1955], Completely Continuous Perturbation of Operators, Dokl. Akad. Nauk SSSR 101, 35–38 (in Russian).MathSciNetGoogle Scholar
  23. SUHADOLC A. [1971], Linearized Boltzmann Equation in L1-Space, J. Math. Anal. Appl. 35, 1–13.MathSciNetCrossRefzbMATHGoogle Scholar
  24. VIDAV I. [1968], Existence and Uniqueness of Nonnegative Eigenfunctions of the Boltzmann Operator, J. Math. Anal. Appl. 22, 144–155.MathSciNetCrossRefzbMATHGoogle Scholar
  25. VIDAV I. [1970], Spectra of Perturbed Semigroups with Applications to Transport Theory, J. Math. Anal. Appl. 30, 264–279.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

There are no affiliations available

Personalised recommendations