An estimate for an extremal plurisubharmonic function on ℂn

  • B. A. Taylor
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1028)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    H. Alexander, Projective capacity, Ann. of Math. Studies 100 (1981), 3–27 Conference on Several Complex Variables, Princeton Univ. Press.MathSciNetzbMATHGoogle Scholar
  2. [AT]
    H. Alexander and B.A. Taylor, Comparison of two capacaties in ℂn, preprint.Google Scholar
  3. [BT]
    E. Bedford and B.A. Taylor, A new capacity for plurisubharmonic functions, Acta. Math. 149 (1982) 1–40.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [G1]
    L. Gruman, The area of analytic varieties in ℂn, Math. Scand. 41 (1977), 365–397.MathSciNetzbMATHGoogle Scholar
  5. [G2]
    _____, Value distribution for holomorphic maps in ℂn, Math. Ann. 245 (1979), 199–218.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [G3]
    _____, Ensembles exceptionnels pour les applications holomorphes dans ℂn, preprint.Google Scholar
  7. [Sib]
    N. Sibony, private communication.Google Scholar
  8. [S]
    J. Siciak, Extremal plurisubharmonic functions in ℂn, Proc. First Finnish-Polish Summer School in Complex Analysis, 1977, 115–152.Google Scholar
  9. [Z1]
    V. P. Zaharjuta, Transfinite diameter, Cebysev constants, and capacity for compacta in ℂn, Math. USSR Sbornik 25(1975), 350–364.CrossRefGoogle Scholar
  10. [Z2]
    ________, Extremal plurisubharmonic functions, orthogonal polynomials, and the Bernstein-Walsh theorem for analytic functions of several complex variables, Ann. Polon. Math. 33 (1976), 137–148.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • B. A. Taylor
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn Arbor

Personalised recommendations