Advertisement

An estimate for an extremal plurisubharmonic function on ℂn

  • B. A. Taylor
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1028)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    H. Alexander, Projective capacity, Ann. of Math. Studies 100 (1981), 3–27 Conference on Several Complex Variables, Princeton Univ. Press.MathSciNetzbMATHGoogle Scholar
  2. [AT]
    H. Alexander and B.A. Taylor, Comparison of two capacaties in ℂn, preprint.Google Scholar
  3. [BT]
    E. Bedford and B.A. Taylor, A new capacity for plurisubharmonic functions, Acta. Math. 149 (1982) 1–40.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [G1]
    L. Gruman, The area of analytic varieties in ℂn, Math. Scand. 41 (1977), 365–397.MathSciNetzbMATHGoogle Scholar
  5. [G2]
    _____, Value distribution for holomorphic maps in ℂn, Math. Ann. 245 (1979), 199–218.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [G3]
    _____, Ensembles exceptionnels pour les applications holomorphes dans ℂn, preprint.Google Scholar
  7. [Sib]
    N. Sibony, private communication.Google Scholar
  8. [S]
    J. Siciak, Extremal plurisubharmonic functions in ℂn, Proc. First Finnish-Polish Summer School in Complex Analysis, 1977, 115–152.Google Scholar
  9. [Z1]
    V. P. Zaharjuta, Transfinite diameter, Cebysev constants, and capacity for compacta in ℂn, Math. USSR Sbornik 25(1975), 350–364.CrossRefGoogle Scholar
  10. [Z2]
    ________, Extremal plurisubharmonic functions, orthogonal polynomials, and the Bernstein-Walsh theorem for analytic functions of several complex variables, Ann. Polon. Math. 33 (1976), 137–148.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • B. A. Taylor
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn Arbor

Personalised recommendations