Advertisement

Premières formes de Chern des variétés kählériennes compactes [d’après E. Calabi, T. Aubin et S. T. Yau]

  • Jean-Pierre Bourguignon
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 710)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    M. APTE-Sur certaines classes caractéristiques des variétés kählériennes compactes, C.R.Acad. Sci. Paris, 240 (1955), 149–151.zbMATHMathSciNetGoogle Scholar
  2. [2]
    M. ATIYAH, N. HITCHIN, I. M. SINGER-Deformations of instantons, Proc. Nat. Acad. Sci. U.S.A., 74 (1977), 2662–2663.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    T. AUBIN-Métriques riemanniennes et courbure, J. Diff. Geom., 4 (1970), 383–424.zbMATHMathSciNetGoogle Scholar
  4. [4]
    T. AUBIN-Equations du type de Monge-Ampère sur les variétés kählériennes compactes, C.R. Acad. Sci. Paris, 283 (1976), 119–121.zbMATHMathSciNetGoogle Scholar
  5. [5]
    M. BERGER-Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. France, 83 (1955), 279–330.zbMATHGoogle Scholar
  6. [6]
    M. BERGER, A. LASCOUX-Variétés kählériennes compactes, Lecture Notes in Math vol. 154, Springer, 1970.Google Scholar
  7. [7]
    S. BOCHNER-Vector fields and Ricci curvature, Bull. A. M. S., 52 (1946), 776–797.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    J.-P. BOURGUIGNON-Sur les géodésiques fermées des variétés quaternioniennes de dimension 4, Math. Ann., 221 (1976), 153–165.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    E. CALABI-The space of Kähler metrics, Proc. Internat. Congress Math. Amsterdam, vol. 2 (1954), 206–207.Google Scholar
  10. [10]
    E. CALABI-On Kähler manifolds with vanishing canonical class, Algebraic Geometry and Topology, A Symposium in honor of S. Lefschetz, Princeton Univ. Press, (1955), 78–89.Google Scholar
  11. [11]
    E. CALABI-Improper affine hyperspheres and a generalization of a theorem of K. Jörgens, Mich. Math. J., 5 (1958), 105–126.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    S. S. CHERN-Characteristic classes of Hermitian manifolds, Ann. of Math., 47 (1946), 85–121.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    H. GUGGENHEIMER-Über vierdimensionale Einsteinraüme, Experientia 8, (1952), 420–421.zbMATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    F. HIRZEBRUCH-Some problems on differentiable and complex manifolds, Ann. Math., 60 (1954), 210–236.MathSciNetCrossRefGoogle Scholar
  15. [15]
    F. HIRZEBRUCH-Topological methods in algebraic geometry, Grundlehren der math. Wiss., Springer, Berlin-Heidelberg-New York, 1966.zbMATHGoogle Scholar
  16. [16]
    F. HIRZEBRUCH, K. KODAIRA-On the complex projective spaces, J. Math. Pures appl., 36 (1957), 201–216.zbMATHMathSciNetGoogle Scholar
  17. [17]
    N. HITCHIN-Compact four-dimensional Einstein manifolds, J. Diff. Geom., 9(1974), 435–441.zbMATHMathSciNetGoogle Scholar
  18. [18]
    S. KOBAYASHI, T. OCHIAI-On compact Kähler manifolds with positive holomorphic bisectional curvature, Proc. Symp. Pure Maths. A.M.S., XXVII, Part 2, Stanford, (1975), 113–123.Google Scholar
  19. [19]
    K. KODAIRA-Collected works, Princeton Univ. Press, Princeton, vol. III, 1975.Google Scholar
  20. [20]
    A. LICHNEROWICZ-Spineurs harmoniques, note aux C.R. Acad. Sci. Paris, 257 (1963), 7–9.zbMATHMathSciNetGoogle Scholar
  21. [21]
    Y. MATSUSHIMA-Remarks on Kähler-Einstein manifolds, Nagoya Math. J., 46 (1972), 161–173.zbMATHMathSciNetGoogle Scholar
  22. [22]
    C. MORREY-Multiple integrals in the calculus of variations, Grundlehren der mathematischen Wiss., Springer, 1966.Google Scholar
  23. [23]
    L. NIRENBERG-Monge-Ampère equations and some associated problems in geometry, Proc. Int. Cong. Vancouver, Tome II (1974), 275–279.Google Scholar
  24. [24]
    A. POLOMBO-Nombres caractéristiques d’une surface kählérienne, Note aux C.R. Acad. Sci. Paris, 283 (1976), 1025–1028.zbMATHMathSciNetGoogle Scholar
  25. [25]
    G. de RHAM-Variétés différentiables, Paris, Hermann, 1960.zbMATHGoogle Scholar
  26. [26]
    F. SEVERI-Some remarks on the topological characterization of algebraic surfaces, in Studies presented to R. von Mises (1954), Academic Press, New York, 54–61.Google Scholar
  27. [27]
    A. VAN DE VEN-Some recent results on surfaces of general type, Séminaire Bourbaki, Exposé 500, fév. 1977, Lecture Notes in Math., no 677, Springer, 155–166.Google Scholar
  28. [28]
    S. T. YAU-On the curvature of compact Hermitian manifolds, Inventiones Math., 25 (1974), 213–239.zbMATHCrossRefGoogle Scholar
  29. [29]
    S. T. YAU-On Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A., 74 (1977), 1798–1799.zbMATHMathSciNetCrossRefGoogle Scholar
  30. [30]
    S. T. YAU-On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I, Preprint, 1977.Google Scholar
  31. [31]
    S. T. YAU, S. Y. CHENG-On the regularity of the Monge-Ampère equation \(\det \left( {\frac{{\partial ^2 u}}{{\partial x^i \partial x^j }}} \right) = F(x,u)\), Comm. Pure Appl. Math., XXX (1977), 47–68.MathSciNetGoogle Scholar

Copyright information

© N. Bourbaki 1979

Authors and Affiliations

  • Jean-Pierre Bourguignon

There are no affiliations available

Personalised recommendations