On some counterexamples in measure theory

  • Aljoša Volčič
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 948)


Linear Combination Lecture Note Vertical Line Horizontal Line Measure Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.Becker, Sur l'integrale de Daniell, preprint.Google Scholar
  2. [2]
    D.H. Fremlin, Decomposable Measure Spaces, Z.Wahrs. verv. Gebiete 45 (1978), 159–167.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    P.R.Halmos, Measure Theory, Van Nostrand, 1950.Google Scholar
  4. [4]
    I.E. Segal, Equivalences of Measure Spaces, Am.Jour. of Math. 73 (1961), 275–313.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    M.H. Stone, Notes on Integration, Proc. Nat.Acad.Sci. U.S.A. vol. ĭIV (1948), 336–342, 447–455, 483–490; vol. ĭV (1949), 50–58.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    A. Volčič, Teoremi di decomposizione per misure localizzabili, Rend. di Matem. Roma (2) vol. 6, serie VI (1973), 307–336.MathSciNetMATHGoogle Scholar
  7. [7]
    A. Volčič, Localizzabilità, semifinitezza e misure esterne, Rend. Ist. Matem. Univ. Trieste, vol.VI, fasc.II (1974), 178–197.MATHGoogle Scholar
  8. [8]
    A. Volčič, Un confronto tra l'integrale di Daniell-Stone e quello di Lebesgue, Rend.Circolo Mat. Palermo ser. II t. XXVII (1978), 327–336.MATHGoogle Scholar
  9. [9]
    A. Volčič, Sulla differenziazione degli integrali di Daniell-Stone Rend. Sem.Mat. Padova vol. LXI (1978), 251–258.MATHGoogle Scholar
  10. [10]
    A.Volčič, Liftings for Daniell Integrals, to appear in the Proceedings of the Oberwolfach Conference on Measure Theory (1981), Lecture Notes in Mathematics, Springer-Verlag.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Aljoša Volčič

There are no affiliations available

Personalised recommendations