Advertisement

Strongly continuous operator cosine functions

  • Dieter Lutz
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 948)

Keywords

Cauchy Problem Order Differential Equation Cosine Function Infinitesimal Generator Order Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Baker, J.A.,,D'Alembert's functional equation in Banach algebras, Acta Sci.Math. Szeged 32, (1971), 225–234.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Baker,J.A. Davidson,K.R.: Cosine exponential and quadratic functions, Preprint.Google Scholar
  3. [3]
    Buche, A.B., On the cosine — sine operator functional equations, Aequ. Math. 6, (1971), 231–234.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Da Prato, G.,Giusti, E., Una catterizzatione dei generatori di funzioni coseno astratto, Boll.Unione Mat.Ital.22 (1967), 357–362.Google Scholar
  5. [5]
    Fattorini, H.O., Ordinary differential equations in linear topological spaces, I,II, J.Diff.Equ. 5 (1968),72–105, 6(1969) 50–70.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Fattorini, H.O., Uniformly bounded cosine functions in Hilbert spaces, Indiana Univ. Math. J. 20 (1070), 411–425.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Faulkner, G.D., Shonkwiler, R.W., Cosine representations of abelian *-semigroups and generalized cosine operator functions, Can.J.Math. 30 (1978), 474–482.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Giusti, E., Funzioni coseno periodiche, Boll.Unione Mat.Ital.22 (1967), 478–485.MathSciNetzbMATHGoogle Scholar
  9. [9]
    Goldstein, J.A., On the convergence and approximation of cosine functions, Aequ.Math. 10 (1974), 201–205.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Goldstein, J.A., On a connection between first and second order differential equations in Banach spaces, J.Funct.Anal. 4(1969),50–70.CrossRefGoogle Scholar
  11. [11]
    Goldstein, J.A., Radin, Ch., Showalter, R.E., Convergence rates of ergodic limits for semigroups and cosine functions, Semigroup Forum 16(1978), 89–95.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Kisynski, J., On operator-valued solutions of d'Alembert's functional equation I, Coll. Math. 23 (1971),107–114.MathSciNetzbMATHGoogle Scholar
  13. [13]
    Kisynski, J., On operator-valued solutions of d'Alembert's functional equations II, Studia Math. 24 (1972), 43–66.MathSciNetzbMATHGoogle Scholar
  14. [14]
    Kisynski, J., On cosine operator functions and one-parameter groups of operators, Studia Math.44 (1972),93–105.MathSciNetzbMATHGoogle Scholar
  15. [15]
    Konishi, Y., Cosine functions of operators in locally convex spaces, J.Fac.Sci.Univ.Tokyo Math. 18, (1971/72), 443–463.MathSciNetzbMATHGoogle Scholar
  16. [16]
    Kurepa, S., A cosine functional equation in n-dimensional vector space, Glasnik Mat. 13 (1958), 169–189.MathSciNetzbMATHGoogle Scholar
  17. [17]
    Kurepa, S., A cosine functional equation in Hilbert space, Can. J.Math. 12 (1960), 45–50.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Kurepa, S., On some functional equations in Banach space, Studia Math. 19 (1960), 149–158.MathSciNetzbMATHGoogle Scholar
  19. [19]
    Kurepa, S., A cosine functional equtaion in Banach algebras, Acta Sci.Math.Szeged 23 (1962), 255–267.MathSciNetzbMATHGoogle Scholar
  20. [20]
    Lutz, D., Der infinitesimale Erzeuger für Lösungen der Funktionalgleichung des Cosinus mit Werten im Bereich der abgeschlossenen linearen Operatoren auf einem Banachraum, Seminarberichte FB Mathematik 4 (1978), 43–70. FU Hagen.Google Scholar
  21. [21]
    Lutz, D., Which operators generate cosine operator functions? Rendic.Accad.Naz.Lincei 63(1978), 314–317.MathSciNetzbMATHGoogle Scholar
  22. [22]
    Lutz, D., Compactness properties of operator cosine functions, C.R.Math.Rep.Acad.Sci.Canada 2 (1980), 277–280.MathSciNetzbMATHGoogle Scholar
  23. [23]
    Lutz, D., Über operatorwertige Lösungen der Funktionalgeichung des Cosinus, Math.Z. 171 (1980) 233–245.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    Lutz, D., Periodische operatorwertige Cosinusfunktionenen, Resultate der Mathematik 4, (1981), 75–83.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Lutz, D., Representation of operator-valued cosine functions by Laplace transform, Preprint.Google Scholar
  26. [26]
    Lutz, D., Über die Konvergenz operatorwertiger Cosinusfunktionen mit gestörtem infinitesimalen Erzeuger, Periodic.Math. Hung. (to appear).Google Scholar
  27. [27]
    Lutz, D., On bounded time-dependent perturbations of operator cosine functions, Aequ. Math. (to appear).Google Scholar
  28. [28]
    Lutz, D., Zur Approximation operatorwertiger Cosinusfunktionen, Preprint.Google Scholar
  29. [29]
    Lutz, D., Some spectral properties of bounded operator cosine functions, Preprint.Google Scholar
  30. [30]
    Lutz, D., On resolvents of generators of operator cosine functions, Preprint.Google Scholar
  31. [31]
    Maltese, G., Spectral representations for solutions of certain abstract functional equations, Comp.Math. 15 (1962), 1–22.MathSciNetzbMATHGoogle Scholar
  32. [32]
    Maltese, G., Spectral representations for some unbounded normal operators, Trans. Amer.Math.Soc.110(1964), 72–87.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    Nagy, B., On the generators of cosine operator functions, Publ. Math. 21 (1974), 151–154.MathSciNetzbMATHGoogle Scholar
  34. [34]
    Nagy, B., On cosine operator functions on Banach spaces, Acta Sci. Math. Szeged 36 (1974), 281–290.MathSciNetzbMATHGoogle Scholar
  35. [35]
    Nagy, B., Cosine operator functions and the abstract Cauchy problem, Period.Math. Hung. 7 (1976), 213–217.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    Nagy, B., Approximation theorems for cosine operator functions, Acta Math.Acad.Sci.Hung. 29 (1977), 69–76.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    Nelson, S., Triggiani, R., Analytic properties of cosine operators, Proc.Amer.Math.Soc. 74 (1979), 101–104.MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    Rankin III, S.M., A remark on cosine families, Proc.Amer.Math.Soc. 79 (1980), 376–378.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    Sova, M., Cosine operator functions, Rozprawy Mathematyczne 49 Warszawa 1966.Google Scholar
  40. [40]
    Sova, M., Semigroups and cosine functions of normal operators in Hilbert space, Casopis pest.mat. 93, (1968), 437–458.MathSciNetzbMATHGoogle Scholar
  41. [41]
    Takenaka, T., Okazawa, N., A Phillips-Miyadera type perturbation theorem for cosine functions of operators, Tôhoku Math. J. 30 (1978), 107–115.MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    Travis, C.C., Webb, F.F., Compactness, regularity and uniform continuity properties of strongly continuous families, Houston J.Math. 3, (1977), 555–567.MathSciNetzbMATHGoogle Scholar
  43. [43]
    Travis, C.C., Webb, G.F., Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci.Hung. 32 (1978), 75–96.MathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    Travis, C.C., Webb, G.F., An abstract second order semilinear Volterra integrodifferential equation, SIAM J.Math.Anal.10 (1979), 412–424.MathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    Travis,C.C., Webb.G.F., Perturbation of strongly continuous cosine family generators, Preprint.Google Scholar
  46. [46]
    Vajzović, F., Einige Funktionalgleichungen im Fréchetschen Raum, Glasnik Mat. 3 (1968), 19–38.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Dieter Lutz

There are no affiliations available

Personalised recommendations