Skip to main content

Some general remarks on improperly posed problems for partial differential equations

  • Conference paper
  • First Online:
Symposium on Non-Well-Posed Problems and Logarithmic Convexity

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 316))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdul-Latif, A.I., Uniqueness of the solution of some hyperbolic boundary value problems, Ph.D. dissertation, University of Maryland (1966).

    Google Scholar 

  2. Adelson, L., Singular perturbations of a class of improperly posed problems, Ph.D. dissertation, Cornell (1970).

    Google Scholar 

  3. Agmon, S., Unique continuation and lower bounds for solutions of abstract differential equations, Proc. Inter. Congress Math. Stockholm (1962), pp. 301–305.

    Google Scholar 

  4. Agmon, S., Unicité et convexité dans les problèmes différentiels, Sem. Math. Sup. (1965), University of Montreal Press (1966).

    Google Scholar 

  5. Agmon, S., Lower bounds for solutions of Schrödinger equations, J. D'Analyse Math., 23 (1970), pp. 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  6. Agmon, S., and Nirenberg, L., Lower bounds and uniqueness theorems for solutions of differential equations in Hilbert space, Comm. Pure Appl. Math., 20 (1967), pp. 207–229.

    Article  MathSciNet  MATH  Google Scholar 

  7. Aronszajn, N., A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pure Appl., 36 (1957), pp. 235–249.

    MathSciNet  MATH  Google Scholar 

  8. Aziz, A.K., Gilbert, R.P., and Howard, H.C., A second order non-linear elliptic boundary value problem with generalised Goursat data, Ann. Mat. Pura Appl., 72 (1966), pp. 325–341.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bergman, S., Integral operators in the theory of linear partial differential equations, (Erg. d. math. u. Grenzgebiete, vol. 23) Springer, Berlin (1961).

    Google Scholar 

  10. Bertolini, F., Sul problema di Cauchy per l'equazioné di Laplace in tre variabili independenti, Ann. Mat. Pura Appl., 40 (1956), pp. 121–128.

    Article  MathSciNet  MATH  Google Scholar 

  11. Berzanskii, Ju. M., A uniqueness theorem in the inverse spectral problem for Schrödinger's equation, Trudy Mosk. Mat. Obsc., 7 (1968)

    Google Scholar 

  12. Bourghin, D.G., and Duffin, R.J., The Dirichlet problem for the vibrating string equation, Bulletin Amer. Math. Soc., 45 (1939), pp. 851–858.

    Article  MATH  Google Scholar 

  13. Brun, L., Sur l'unicité en thermoélasticité dynamique et diverses expressions anologues à la formule de Clapeyron, C.R. Acad. Sci. Paris, 261 (1965), pp. 2584–2587.

    MathSciNet  Google Scholar 

  14. Brun, L., Méthodes energétiques dans les systèmes évolutifs linéaires, Premier partie: Séparation des énergies, Deuxième partie: Théoremès d'unicité, J. de Mechanique, 8 (1969), pp. 125–166, 167–192.

    MathSciNet  Google Scholar 

  15. Cahen, G., Determination experimentale des parametres des systèmes a retard, Revue Franc. Trait Inf. (1964), pp. 15–23.

    Google Scholar 

  16. Calderon, A.P., Uniqueness in the Cauchy problem for partial differential equations, Amer. J. Math., 80 (1958), pp. 16–36.

    Article  MathSciNet  MATH  Google Scholar 

  17. Cannon, J.R., Determination of the unknown coefficient in a parabolic differential equation, Duke Math. J., 30 (1963), pp. 313–323, see also Determination of certain parameters in heat conduction problems, J. Math. Anal. Appl., 8 (1964), pp. 188–201.

    Article  MathSciNet  MATH  Google Scholar 

  18. Cannon, J.R., A Cauchy problem for the heat equation, Ann. Mat. Pura Appl., 66 (1964), pp. 155–165.

    Article  MathSciNet  MATH  Google Scholar 

  19. Cannon, J.R., Determination of the unknown coefficient k(u) in the equation ∇·k(u)∇u=0 from overspecified boundary data, J. Math. Anal. Appl., 18 (1967), pp. 112–114.

    Article  MathSciNet  MATH  Google Scholar 

  20. Cannon, J.R., Determination of an unknown heat source from over-specified boundary data, SIAM J. Numer. Anal., 5 (1968), pp. 275–286.

    Article  MathSciNet  MATH  Google Scholar 

  21. Cannon, J.R., and Dunninger, D.R., Determination of an unknown forcing function in a hyperbolic equation from overspecified data, Ann. Mat. Pura Appl., 85 (1970), pp. 49–62.

    Article  MathSciNet  MATH  Google Scholar 

  22. Cannon, J.R., and Hill, C.D., Continuous dependence of bounded solutions of a linear parabolic differential equation upon interior Cauchy data, Duke Math. J., 35 (1968), pp. 217–230.

    Article  MathSciNet  MATH  Google Scholar 

  23. Carleman, T., Sur un problème de unicité pour des systêmes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Math. Astr. Fys., 26B (1939), pp. 1–9.

    MathSciNet  MATH  Google Scholar 

  24. Cohen, P.J., and Lees, M., Asymptotic decay of solutions of differential inequalities, Pac. J. Math., 11 (1961), pp. 1235–1249.

    Article  MathSciNet  MATH  Google Scholar 

  25. Colton, D., Paper in this volume.

    Google Scholar 

  26. Colton, D., Cauchy's problem for almost linear elliptic equations in two independent variables, J. Approx. Theory, 3 (1970), pp. 66–71.

    Article  MathSciNet  MATH  Google Scholar 

  27. Conlan, J., and Trytten, G., Pointwise bounds in the Cauchy problem for elliptic systems of partial differential equations, Arch. Rat. Mech. Anal., 22 (1966), pp. 143–152.

    Article  MathSciNet  MATH  Google Scholar 

  28. Cordes, H.O., Über die Bestimmheit der Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben, Nach. Akad. Wiss. Göttingen Math.-Phys., 11 (1956), pp. 239–258.

    MathSciNet  MATH  Google Scholar 

  29. Crooke, P.S., On the Saffman model for the flow of a dusty gas and some related eigenvalue inequalities, Ph.D., dissertation, Cornell (1970).

    Google Scholar 

  30. Douglas, J., The approximate solution of an unstable physical problem subject to constraints, Functional Anal. and Optimization. Academic Press, New York (1966), pp. 65–66.

    Google Scholar 

  31. Douglas, J., Approximate continuation of harmonic and parabolic functions, Numerical Sol. of Partial Diff. Eqtns., Academic Press (1966).

    Google Scholar 

  32. Douglas, J., and Gallie, T.M., An approximate solution of an improper boundary value problem, Duke Math. J., 26 (1959), pp. 339–348.

    Article  MathSciNet  MATH  Google Scholar 

  33. Douglas, J., and Jones, B.F., The determination of a coefficient in a parabolic differential equation, II Numerical approximation, J. Math. Mech., 11 (1962), pp. 919–926.

    MathSciNet  MATH  Google Scholar 

  34. Douglis, A., Uniqueness in the Cauchy problem for elliptic systems of equations, Comm. Pure Appl. Math., 6 (1953), pp. 291–298.

    Article  MathSciNet  MATH  Google Scholar 

  35. Douglis, A., On uniqueness in Cauchy problems for elliptic systems of equations, Comm. Pure Appl. Math., 13 (1960), pp. 593–607.

    Article  MathSciNet  MATH  Google Scholar 

  36. Dunninger, D.R., and Zachmonoglou, E.C., The condition for uniqueness of the Dirichlet problem for hyperbolic equations in cylindrical domains, J. Math. and Mech., 18 (1969), pp. 763–766.

    MathSciNet  MATH  Google Scholar 

  37. Dyer, R.H., Paper in this volume.

    Google Scholar 

  38. Dyer, R.H., and Edmunds, D.E., Lower bounds for solutions of the Navier-Stokes equations, Proc. Lond. Math. Soc., 18 (1968), pp. 169–178.

    Article  MathSciNet  MATH  Google Scholar 

  39. Edelstein, W.S., A uniqueness theorem in the linear theory of elasticity with microstructure, Acta. Mech., 8 (1969), pp. 183–184.

    Article  MathSciNet  MATH  Google Scholar 

  40. Edmunds, D.E., Asymptotic behaviour of solutions of the Navier-Stokes equations, Arch. Rat. Mech. Anal., 22 (1966), pp. 15–21.

    Article  MathSciNet  MATH  Google Scholar 

  41. Fadeev, L.D., Increasing solutions of Schrödinger's equation, Dokl. Akad. Nauk SSSR, 165 (1965), pp. 514–517.

    Google Scholar 

  42. Fichera, G., Linear elliptic differential systems and eigenvalue problems, Lecture Notes in Math., No. 8, Springer-Verlag (1965).

    Google Scholar 

  43. Foias, C., Gussi, G., and Poenaru, V., Sur le problème de Cauchy pour le type elliptique à deux variables, Acad. Rep. Pop. Roman. Bull. Mat. Fiz., 7 (1955), pp. 97–103.

    MathSciNet  Google Scholar 

  44. Fox, D.W., and Pucci, C., The Dirichlet problem for the wave equation, Ann. di Mat. Pura Appl., 46 (1958), pp. 155–182.

    Article  MathSciNet  MATH  Google Scholar 

  45. Franklin, J., Well posed stochastic extensions of ill-posed linear problems, J. Math. Anal. Appl., 31 (1970), pp. 682–716.

    Article  MathSciNet  MATH  Google Scholar 

  46. Gajewski, H., and Zacharias, K., Zur regularisierung liner Klasse nichtkorrekter Probleme bei Evolutionsgleichungen, J. Math. Anal. Appl., 38 (1972), pp. 784–789.

    Article  MathSciNet  MATH  Google Scholar 

  47. Garabedian, P., Partial differential equations, Interscience Publishers, New York (1964).

    MATH  Google Scholar 

  48. Garabedian, P., and Lieberstein, H.M., On the numerical calculation of detached bow shock waves in hypersonic flow, J. Aero. Sci., 25 (1958), pp. 109–118.

    Article  MathSciNet  MATH  Google Scholar 

  49. Gilbert, R.P., Function theoretic methods in partial differential equations, Academic Press (1969).

    Google Scholar 

  50. Hadamard, J., Lectures on the Cauchy problem in linear partial differential equations, Yale University Press (1923).

    Google Scholar 

  51. Heinz, E., Über die Eindentigkeit beim Cauchyschen Anfangswertproblem einer elliptischen Differentialgleichung zweiter Ordnung, Nach. Akad. Wiss. Göttingen Math. Phys. IIa, 10 (1955), pp. 1–12.

    MathSciNet  MATH  Google Scholar 

  52. Hills, R., On the stability of linear dipolar fluids and On uniqueness and continuous dependence for a linear micropolar fluid, (both to appear)

    Google Scholar 

  53. Holmgren, E., Über Systeme von linearen partielle Differentialgleichungen, Ofv. kongl. Vet.-Akad. Förk., 58 (1901), pp. 91–103.

    MATH  Google Scholar 

  54. Hörmander, L., On the uniqueness of the Cauchy problem, Math. Scand., 6 (1958), pp. 213–225.

    MathSciNet  MATH  Google Scholar 

  55. Hyman, M., Electrostatic focussing of electron beams by coaxial cylinders, Symp. on Partial Diff. Eqtns. and Cont. Mech. Math. Research Center, University of Wisconsin (1960), p. 354.

    Google Scholar 

  56. Radley, D.E., The theory of the Pierce-type electron gun, J. Electr. Constr., 4 (1958), see also Electrodes for convergent Pierce-type electron guns, J. Electr. Constr., 15 (1963).

    Google Scholar 

  57. Ivanov, V.K., The Cauchy problem for the Laplace equation in an infinite strip, Diff. Uravneniya, 1 (1965), pp. 131–136.

    MathSciNet  Google Scholar 

  58. Ivanov, V.K., On ill-posed problems, Math. 5b, 61 (1965), pp. 211–223, see also On a method in the theory of incorrect problems of mathematical physics, Symp. Partial Diff. Eqtns. (Novosibirsk) (1963), pp. 102–107.

    Google Scholar 

  59. John, F., The Dirichlet problem for the wave equation, Amer. J. Math., 63 (1941), pp. 141–154.

    Article  MathSciNet  MATH  Google Scholar 

  60. John, F., Numerical solution of the heat equation for preceding time, Ann. Mat. Pura Appl., 40 (1955), pp. 129–142.

    Article  MathSciNet  MATH  Google Scholar 

  61. John, F., A note on "improper" problems in partial differential equations, Comm. Pure Appl. Math., 8 (1955), pp. 494–495.

    Article  MathSciNet  Google Scholar 

  62. John, F., Numerical solution of problems which are not well-posed in the sense of Hadamard, Proc. Rome Symp. Prov. Int. Comp. Center (1959), pp. 103–116.

    Google Scholar 

  63. John, F., Continuous dependence on data for solutions of partial differential equations with a prescribed bound, Comm. Pure Appl. Math., 13 (1960), pp. 551–585.

    Article  MathSciNet  MATH  Google Scholar 

  64. Jones, B.F., The determination of a coefficient in a parabolic differential equation; I Existence and Uniqueness, J. Math. Mech., 11 (1962), pp. 907–918.

    MathSciNet  MATH  Google Scholar 

  65. Khosrovshahi, G.B., Growth properties for solutions of Schrödinger type systems, Ph.D. dissertation, Cornell (1972).

    Google Scholar 

  66. Khosrovshahi, G.B., Paper in this volume.

    Google Scholar 

  67. Knops, R.J., Paper in this volume.

    Google Scholar 

  68. Knops, R.J., and Payne, L.E., Uniqueness in classical elastodynamics, Arch. Rat. Mech. Anal., 27 (1968), pp. 349–355.

    Article  MathSciNet  MATH  Google Scholar 

  69. Knops, R.J., and Payne, L.E., Stability in linear elasticity, Int. J. Solids Structures, 4 (1968), pp. 1233–1242.

    Article  MATH  Google Scholar 

  70. Knops, R.J., and Payne, L.E., On the stability of solutions of the Navier-Stokes equations backward in time, Arch. Rat. Mech. Anal., 29 (1968), pp. 331–335.

    Article  MathSciNet  MATH  Google Scholar 

  71. Knops, R.J., and Payne, L.E., Continuous data dependence for the equations of classical elastodynamics, Proc. Camb. Phil. Soc., 66 (1969), pp. 481–491.

    Article  MathSciNet  MATH  Google Scholar 

  72. Knops, R.J., and Payne, L.E., On uniqueness and continuous data dependence in dynamical problems of linear thermoelasticity, Int. J. Structures Solid, 6 (1970), pp. 1173–1184.

    Article  MATH  Google Scholar 

  73. Knops, R.J., and Payne, L.E., Growth estimates for solutions of evolutionary equations in Hilbert space with applications in elastodynamics, Arch. Rat. Mech. Anal., 41 (1971), pp. 363–398.

    Article  MathSciNet  MATH  Google Scholar 

  74. Knops, R.J., and Steel, T.R., Uniqueness in the linear theory of a mixture of two elastic solids, Int. J. Eng. Sci., 7 (1969), pp. 571–577.

    Article  MathSciNet  MATH  Google Scholar 

  75. Krein, S.G., On some classes of correctly posed boundary value problems, Dokl. Akad. Nauk SSSR, 114 (1957), pp. 1162–1165.

    MathSciNet  Google Scholar 

  76. Kumano-go, H., On the uniqueness of the Cauchy problem and the unique continuation theorem for elliptic equations, Osaka Math. J., 14 (1962), pp. 181–212.

    MathSciNet  MATH  Google Scholar 

  77. Landis, E.M., Certain properties of equations of elliptic type, Dokl. Akad. Nauk SSSR, 107 (1956), pp. 640–643.

    MathSciNet  MATH  Google Scholar 

  78. Lattes, R., and Lions, J.L., The method of quasireversibility. Applications to partial differential equations, Amer. Elsevier Publ. Co. Inc., New York (1969).

    MATH  Google Scholar 

  79. Lavrentiev, M.M., On the Cauchy problem for the Laplace equation, Izvest. Akad. Nauk SSSR, Ser. Math., 120 (1956), pp. 819–842.

    MathSciNet  Google Scholar 

  80. Lavrentiev, M.M., On the problem of Cauchy for linear elliptic equations of second order, Dokl. Akad. Nauk SSSR, 112 (1957), pp. 195–197.

    MathSciNet  Google Scholar 

  81. Lavrentiev, M.M., Some improperly posed problems in mathematical physics, Springer-Verlag, New York (1967).

    Book  MATH  Google Scholar 

  82. Lavrentiev, M.M., Romanov, V.G., and Vasiliev, V.G., Multidimensional inverse problems for differential equations, Lecture Notes in Mathematics, 167, Springer Verlag (1970).

    Google Scholar 

  83. Lax, P.D., A stability theorem for solutions of abstract differential equations, and its application to the study of local behaviour of solutions of elliptic equations, Comm. Pure Appl. Math., 9 (1956), pp. 747–766.

    Article  MathSciNet  MATH  Google Scholar 

  84. Levine, H.A., Logarithmic convexity and the Cauchy problem for some abstract second order differential inequalities, J. Diff. Eqtns., 8 (1970), pp. 34–55.

    Article  MathSciNet  MATH  Google Scholar 

  85. Levine, H.A., On a theorem of Knops and Payne in dynamical linear thermoelasticity, Arch. Rat. Mech. Anal., 38 (1970), pp. 290–307.

    Article  MATH  Google Scholar 

  86. Levine, H.A., Logarithmic convexity, first order differential inequalities and some applications, Trans. Amer. Math. Soc., 152 (1970), pp. 299–319.

    Article  MathSciNet  MATH  Google Scholar 

  87. Levine, H.A., Logarithmic convexity and the Cauchy problem for P(t)u tt+M(t)ut+N(t)u=0 in Hilbert space, (to appear).

    Google Scholar 

  88. Levine, H.A., Paper in this volume.

    Google Scholar 

  89. Lewy, H., An example of a smooth linear partial differential equation without solution, Ann. of Math., 66 (1957).

    Google Scholar 

  90. Lions, J.L., and Malgrange, B., Sur l'unicité retrograde dans les problèmes mixtes paraboliques, Math. Scand., 8 (1960), pp. 277–286.

    MathSciNet  MATH  Google Scholar 

  91. Lopatinskii, Y.B., Uniqueness of the solution of Cauchy's problem for a class of elliptic equations, Dopov. Akad. Nauk Ukrain (1958), pp. 689–693.

    Google Scholar 

  92. Malgrange, B., Unicité du problème de Cauchy d'après A.P. Calderon, Seminaire Bourbaki (1959), p. 178.

    Google Scholar 

  93. Marcŭk, G.I., On the formulation of certain inverse problems, Dokl. Akad. Nauk SSSR, 156 (1964), pp. 503–506.

    MathSciNet  Google Scholar 

  94. Marcŭk, G.I., Certain problems in numerical and applied mathematics, Novosibirsk (1966).

    Google Scholar 

  95. Miller, K., Three circle theorems in partial differential equations and applications to improperly posed problems, Arch. Rat. Mech. Anal., 16 (1964), pp. 126–154.

    Article  MathSciNet  MATH  Google Scholar 

  96. Miller, K., An eigenfunction expression method for problems with overspecified data, Ann. Scuola Norm Sup di Pisa, 19 (1965), pp. 397–405.

    MATH  Google Scholar 

  97. Miller, K., Stabilized numerical methods for location of poles by analytic continuation, Studies in Numerical Analysis 2: Numerical Solutions of Nonlinear Problems, Symposium SIAM, Philadelphia (1968), pp. 9–20, published SIAM (1970).

    Google Scholar 

  98. Miller, K., Stabilized numerical analytic prolongment with poles, SIAM J. Appl. Math., 18 (1970), pp. 346–363.

    Article  MathSciNet  MATH  Google Scholar 

  99. Miller, K., Least square methods for ill-posed problems with a prescribed bound, SIAM J. Math. Anal., 1 (1970), pp. 52–74.

    Article  MathSciNet  MATH  Google Scholar 

  100. Miller, K., Paper in this volume.

    Google Scholar 

  101. Miranker, W.L., A well-posed problem for the backward heat equation, Proc. Amer. Math. Soc., 12 (1961), pp. 243–247.

    Article  MathSciNet  MATH  Google Scholar 

  102. Mizel, V., and Seidman, T.I., Observation and prediction for the heat equation, J. Math. Anal. Appl., 28 (1969), pp. 303–312, see also same journal, 38 (1972), pp. 149–166.

    Article  MathSciNet  MATH  Google Scholar 

  103. Mizohata, S., Unicité dans le problème de Cauchy pour quelques equations differentielles elliptiques, Mem. Coll. Sci. Univ. Kyoto, 31 (1958), pp. 121–128.

    MathSciNet  MATH  Google Scholar 

  104. Mizohata, S., Unicité du prolongment des solutions des equations elliptiques du quatrième ordre, Proc. Jap. Acad., 34 (1958), pp. 687–692.

    Article  MathSciNet  MATH  Google Scholar 

  105. Muller, C., On the behaviour of the solutions of the differential equation Δu=F(x,u) in the neighbourhood of a point, Comm. Pure Appl. Math., 7 (1954), pp. 505–514.

    Article  MathSciNet  Google Scholar 

  106. Murray, A., Uniqueness and continuous dependence for the equations of elastodynamics without strain energy function, Arch. Rat. Mech. Anal., 47 (1972), pp. 195–204.

    Article  MathSciNet  MATH  Google Scholar 

  107. Murray, A., and Protter, M., Asymptotic behaviour of solutions of second order systems of partial differential equations, (to appear).

    Google Scholar 

  108. Naghdi, P.M., and Trapp, J.A., A uniqueness theorem in the theory of Cosserat surface, J. Elast., 2 (1972), pp. 9–20.

    Article  MathSciNet  Google Scholar 

  109. Nirenberg, L., Uniqueness in Cauchy problems for differential equations with constant leading coefficients, Comm. Pure Appl. Math., 10 (1957), pp. 89–105.

    Article  MathSciNet  MATH  Google Scholar 

  110. Novikov, P.S., On the inverse problem of potential theory, Dokl. Akad. Nauk SSSR, 18 (1938), pp. 165–168.

    Google Scholar 

  111. Ogawa, H., Lower bounds for solutions of hyperbolic inequalities, Proc. Amer. Math. Soc., 16 (1965), pp. 853–857.

    Article  MathSciNet  MATH  Google Scholar 

  112. Ogawa, H., Lower bounds for solutions of differential inequalities in Hilbert space, Proc. Amer. Math. Soc., 16 (1965), pp. 853–857.

    Article  MathSciNet  MATH  Google Scholar 

  113. Ogawa, H., Lower bounds for the solutions of parabolic differential inequalities, Can. J. Math., 19 (1967), pp. 667–672.

    Article  MathSciNet  MATH  Google Scholar 

  114. Payne, L.E., Bounds in the Cauchy problem for the Laplace equation, Arch. Rat. Mech. Anal., 5 (1960), pp. 35–45.

    Article  MathSciNet  MATH  Google Scholar 

  115. Payne, L.E., On some non-well-posed problems for partial differential equations, Numer. Sol. of Nonlinear Diff. Eqtns., M.R.C. Conference University of Wisconsin, Wiley Press (1966), pp. 239–263.

    Google Scholar 

  116. Payne, L.E., On a priori bounds in the Cauchy problem for elliptic equations, SIAM J. Math. Anal., 1 (1970), pp. 82–89.

    Article  MathSciNet  MATH  Google Scholar 

  117. Payne, L.E., and Sather, D., On some non-well-posed problems for the Chaplygin equation, Math. Anal. Appl., 19 (1967), pp. 67–77.

    Article  MathSciNet  MATH  Google Scholar 

  118. Payne, L.E., and Sather, D., On some non-well-posed Cauchy problems for quasilinear equations of mixed type, Trans. Amer. Math. Soc., 128 (1967), pp. 135–141.

    Article  MathSciNet  MATH  Google Scholar 

  119. Payne, L.E., and Sather, D., On singular perturbations in non-well-posed problems, Ann. Mat. Pura Appl., 75 (1967), pp. 219–230.

    Article  MathSciNet  MATH  Google Scholar 

  120. Payne, L.E., and Sather, D., On an initial-boundary value problem for a class of degenerate elliptic operators, Ann. Mat. Pura Appl., 78 (1968), pp. 323–338.

    Article  MathSciNet  MATH  Google Scholar 

  121. Pederson, R.N., On the unique continuation formula for certain second and fourth order elliptic equations, Comm. Pure Appl. Math., 11 (1958), pp. 67–80.

    Article  MathSciNet  MATH  Google Scholar 

  122. Pederson, R.N., Uniqueness and Cauchy's problem for elliptic equations with double characteristics, Ark. Mat., 6 (1967), pp. 535–549.

    Article  MathSciNet  MATH  Google Scholar 

  123. Petrowsky, I.G., Lectures in partial differential equations, Interscience Publishers, New York (1954).

    Google Scholar 

  124. Picone, M., Maggiorazione degli integrali delle equazioni totalmente paraboliche alle derivate parziali del secondo ordine, Ann. Mat. Pura Appl. (1929).

    Google Scholar 

  125. Plis, A., Unique continuation theorems for solutions of partial differential equations, Proc. Int. Cong. Math. Stockholm (1962), pp. 397–402, see also Nonuniqueness in Cauchy's problem for differential equations of elliptic type, J. Math. Mech., 9 (1960).

    Google Scholar 

  126. Plis, A., A smooth linear elliptic equation without any solution in a sphere, Comm. Pure Appl. Math., 14 (1961), pp. 599–617.

    Article  MathSciNet  MATH  Google Scholar 

  127. Protter, M.H., Unique continuation for elliptic equations, Trans. Amer. Math. Soc., 95 (1960), pp. 81–91.

    Article  MathSciNet  MATH  Google Scholar 

  128. Protter, M.H., Properties of solutions of parabolic equations and inequalities, Can. J. Math., 13 (1961), pp. 331–345.

    Article  MathSciNet  MATH  Google Scholar 

  129. Protter, M.H., Asymptotic behaviour and uniqueness theorems for hyperbolic operators, Joint Symp. Part. Diff. Eqtns. (Novosibirsk 1963) Acad. Sci. USSR Moscow (1963), pp. 348–353.

    Google Scholar 

  130. Pucci, C., Studio col metodo delle differenze di un problema di Cauchy relativo ad equazioni a derivate parziali del secondo ordine di tipo parabolico, Ann. Scuolla Norm Pisa, 7 (1953), pp. 205–215.

    MathSciNet  MATH  Google Scholar 

  131. Pucci, C., Sui problemi di Cauchy non "ben posti", Rend. Acad. Naz. Lincei, 18 (1955), pp. 473–477.

    MathSciNet  MATH  Google Scholar 

  132. Pucci, C., Discussione del problema di Cauchy per le equazioni di tipo ellitico, Ann. Mat. Pura Appl., 46 (1958), pp. 131–153.

    Article  MathSciNet  MATH  Google Scholar 

  133. Pucci, C., Some topics in parabolic and elliptic equations, Lecture Series, No. 36, Institute for Fluid Dynamics and Appl. Math., University of Maryland (1958).

    Google Scholar 

  134. Pucci, C., Discussione del problema di Cauchy per le equazioni di tipo ellitico, Ann. Math. Pura Appl., 46 (1958), pp. 391–412.

    Article  MATH  Google Scholar 

  135. Rappaport, I.M., On a two dimensional inverse problem in potential theory, Dokl. Akad. Nauk SSSR, 19 (1938).

    Google Scholar 

  136. Sather, D., and Sather, J., The Cauchy problem for an elliptic parabolic operator, Ann. Mat. Pura Appl., 30 (1968), pp. 197–214.

    Article  MathSciNet  MATH  Google Scholar 

  137. Schaefer, P.W., On the Cauchy problem for an elliptic system, Arch. Rat. Mech. Anal., 20 (1965), pp. 391–412.

    Article  MathSciNet  MATH  Google Scholar 

  138. Schaefer, P.W., On the Cauchy problem for the nonlinear biharmonic equation, J. Math. Anal. Appl., 36 (1971), pp. 660–673.

    Article  MathSciNet  MATH  Google Scholar 

  139. Shirota, T., A remark on the unique continuation theorem for certain fourth order elliptic equations, Proc. Jap. Acad., 36 (1960), pp. 571–573.

    Article  MathSciNet  MATH  Google Scholar 

  140. Sretenskii, L.N., On an inverse problem of potential theory, Izv. Akad. Nauk SSSR, Ser. Math., 2 (1938).

    Google Scholar 

  141. Tihonov, A.N., On stability of inverse problems, Dokl. Akad. Nauk SSSR, 39 (1944), pp. 195–198.

    Google Scholar 

  142. Tihonov, A.N., On the solution of ill-posed problems and the method of regularisation, Dokl. Akad. Nauk SSSR, 151 (1963), pp. 501–504.

    MathSciNet  Google Scholar 

  143. Tihonov, A.N., On the regularisation of ill-posed problems, Dokl. Akad. Nauk SSSR, 153 (1963), pp. 49–52.

    MathSciNet  Google Scholar 

  144. Trytten, G.N., Pointwise bounds for solutions of the Cauchy problem for elliptic equations, Arch. Rat. Mech. Anal., 13 (1963), pp. 222–244.

    Article  MathSciNet  MATH  Google Scholar 

  145. Vekua, I.N., New methods for solving elliptic equations, Gos. Izdat. Tech. Teor. Lit., Moscow (1948).

    MATH  Google Scholar 

  146. Zimmerman, J.M., Band limited functions and improper boundary value problems for a class of nonlinear partial differential equations, J. of Math. Mech., 11 (1962), pp. 183–196.

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

R. J. Knops

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag Berlin

About this paper

Cite this paper

Payne, L.E. (1973). Some general remarks on improperly posed problems for partial differential equations. In: Knops, R.J. (eds) Symposium on Non-Well-Posed Problems and Logarithmic Convexity. Lecture Notes in Mathematics, vol 316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0069621

Download citation

  • DOI: https://doi.org/10.1007/BFb0069621

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-06159-5

  • Online ISBN: 978-3-540-38370-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics