Examples of non-stationary banach space valued stochastic processes of second order

  • Nguyen Van Thu
  • A. Weron
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 656)


Banach Space Correlation Function Borel Subset Isometric Isomorphism Abelian Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S.A. Chobanyan, A. Weron, Banach space valued stationary processes and their linear prediction, Dissertationes Math. 125(1975), 1–45.MathSciNetzbMATHGoogle Scholar
  2. [2]
    R.K. Getoor, The shift operator for non-stationary stochastic processes, Duke Math. J. 23(1956), 175–187.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    H. Hamburger, Über eine Erweterung das Stieltjessehen Momenten-problems, Math.Annalen 81 (1920), 235–319, ibidem 82 (1921), 120–187.MathSciNetCrossRefGoogle Scholar
  4. [4]
    K. Ito, M. Nisio, On the convergence of sums of independent Banach space valued random variables, Osaka J.Math. 5 (1968), 35–48.MathSciNetzbMATHGoogle Scholar
  5. [5]
    Nguyen Van Thu, On additively correlated random variables, Bull.Acad.Polon. 23 (1975), 781–785.MathSciNetzbMATHGoogle Scholar
  6. [6]
    Nguyen Van Thu, Gaussian Markov processes on partially ordered sets, Comm.Math. (to appear).Google Scholar
  7. [7]
    A.E. Nussbaum, Integral representation of semigroups of unbounded self-adjoint operators, Annales of Math. 69 (1959), 133–141.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Weron, Prediction theory in Banach spaces, Lecture Notes in Math. vol.472 (1975), 207–228.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Nguyen Van Thu
    • 1
  • A. Weron
    • 1
  1. 1.Institute of MathematicsWroclaw Technical UniversityWrocławPoland

Personalised recommendations