Advertisement

Homotopy theory and differentiable singularities

  • Valentin Poénaru
Differentiable Maps
Part of the Lecture Notes in Mathematics book series (LNM, volume 197)

Keywords

Inductive Step Normal Bundle Contact Structure Tubular Neighbourhood Homotopy Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.Blank: Thesis (Brandeis) 1967.Google Scholar
  2. [2]
    A.Gramain: Sur les immersions de codimension 1 qui sont des bords. (to appear)Google Scholar
  3. [3]
    М. Λ. ГРОМоВ: Сmaduoное оmоdрaженuх сrоенu В dноиооdрamuх. Uӡв. Акag. нaУк серuх Мam T.33. H.4 1969 p.p. 707–734.Google Scholar
  4. [4]
    A.Haefliger-V.Poénaru: La classification des immersions combinatoires. Publ.Mat.de l'IHES n.23 (1964) pp.75–91.Google Scholar
  5. [5]
    M. Hirsch: Immersions of manifolds. Trans.Am.Math.Soc. 93 (1959) pp.242–276.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Phillips: Submersions of open manifolds. Topology 6 (1967) pp.171–206.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    V. Poénaru: Sur la théorie des immersions. Topology 1 (1962) pp.81–100.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    V.Poénaru: Regular homotopy and isotopy (mimeographed). Harvard 1964.Google Scholar
  9. [9]
    V.Poénaru: Sur l'extension des immersions, en codimension 1. (Sem. Bourbaki 1968).Google Scholar
  10. [10]
    E.Spanier: Algebraic Topology.Google Scholar
  11. [11]
    S. Smale: The classification of immersions of spheres in euclidian spaces. Ann.of Math. 69 (1959) pp.327–344.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    J.P.Serre: Les espaces K(Π,n) (in: Séminaire H.Cartan: Algèbres d'Eilenberg-Mac Lane 1954/1955).Google Scholar
  13. [13]
    R.Thom: La classification des immersions. (Sem.Bourbaki 1957–58 exp.157)Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Valentin Poénaru
    • 1
  1. 1.Département de MathématiqueFaculté des SciencesORSAY

Personalised recommendations