Skip to main content

Manifolds with π1=ℤk

Algebraic Topology

Part of the Lecture Notes in Mathematics book series (LNM,volume 197)

Keywords

  • Exact Sequence
  • Surgery Problem
  • Pontrjagin Class
  • Whitehead Torsion
  • Triangulation Problem

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0068610
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   34.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-36653-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   46.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bass, Algebraic K-theory, Benjamin 1968, New York.

    Google Scholar 

  2. H. Bass-A. Heller-R.G. Swan, The Whitehead group of a polynomial extension, Publ. Math. I.H.E.S. No. 22 (1964), 61–79.

    MathSciNet  CrossRef  MATH  Google Scholar 

  3. W. Browder, Manifolds with Π1=ℤ, Bull. AMS 72 (1966), 283–244.

    Google Scholar 

  4. F.T. Farrell, The obstruction to fibring manifolds over a circle, Yale thesis (1967). (See also Bull. AMS 73 (1967), 737–740).

    Google Scholar 

  5. F.T. Farrell-W.C. Hsiang, A formula on K1R2[T]. Proc. of Sym. in Pure Math. AMS 17 (1970), 192–218. Providence.

    MathSciNet  CrossRef  Google Scholar 

  6. F.T. Farrell-W.C. Hsiang, H-cobordant manifolds are not necessarily homeomorphic, Bull. AMS 73 (1967), 741–744.

    MathSciNet  CrossRef  MATH  Google Scholar 

  7. F.T. Farrell-W.C. Hsiang, Manifolds with Π1=G ×α T (to appear). (See also Bull. AMS 74 (1968), 548–553.)

    Google Scholar 

  8. W.C. Hsiang, A splitting theorem and the Künneth formula in formula in algebraic K-theory, Lecture Notes in Math. Springer-Verlag 108, 72–77.

    Google Scholar 

  9. W.C. Hsiang — J.L. Shaneson, Fake tori, (to appear in the Proceeding of Georgia Conference on Geometric Topology, 1969). (See also Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 687–691).

    Google Scholar 

  10. W.C. Hsiang-C.T.C. Wall, On homotopy tori II, Bull. London Math. Soc. 1 (1969), 341–342.

    MathSciNet  CrossRef  MATH  Google Scholar 

  11. R.C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. Math. 89 (1969), 575–582.

    MathSciNet  CrossRef  MATH  Google Scholar 

  12. R.C. Kirby-L.C. Siebenmann, On the triangulation of manifolds and the Hauptvermutung, Bull. AMS 75 (1969), 742–749. (See also UCLA notes by R.C. Kirby.)

    MathSciNet  CrossRef  MATH  Google Scholar 

  13. R.K. Lashof-M.G. Rothenberg, Triangulation of manifolds I and II, Bull. AMS 75 (1969), 750–757.

    MathSciNet  CrossRef  MATH  Google Scholar 

  14. S.P. Novikov, Homotopy Equivalent smooth manifolds I, Transl. AMS 48 (1965), 271–396.

    Google Scholar 

  15. S.P. Novikov, Manifolds with free Abelian fundamental groups and their applications (Pontrjagin classes, smoothness, multidimensional knots). Transl. AMS 71 (1968), 1–42.

    Google Scholar 

  16. S.P. Novikov, Pontrjagin classes, the fundamental group and some problems of stable algebra, Transl. AMS 70 (1968), 172–179.

    MathSciNet  MATH  Google Scholar 

  17. V.A. Rohlin, A new result in the theory of 4-dimensional manifolds, Doklady 8 (1952), 221–224.

    MathSciNet  Google Scholar 

  18. J.L. Shaneson, Wall's surgery obstruction groups for ℤ G, Ann. Math. 90 (1969), 296–334. (See also Bull. AMS 74 (1968, 467–471.)

    MathSciNet  CrossRef  MATH  Google Scholar 

  19. L.C. Siebenmann, Princeton thesis (1965).

    Google Scholar 

  20. C.T.C. Wall, Surgery of non-simply connected manifolds, Ann. Math. 84 (1966), 217–276.

    MathSciNet  CrossRef  MATH  Google Scholar 

  21. C.T.C. Wall, Poincaré Complexes I, Ann. of Math. 86 (1967), 213–245.

    MathSciNet  CrossRef  MATH  Google Scholar 

  22. C.T.C. Wall, Surgery of compact manifolds, (to appear).

    Google Scholar 

  23. _____, Homotopy tori and the annulus theorem, Bull. London Math. Soc. 1 (1969), 95–97.

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1971 Springer-Verlag

About this paper

Cite this paper

Hsiang, WC. (1971). Manifolds with π1=ℤk . In: Kuiper, N.H. (eds) Manifolds — Amsterdam 1970. Lecture Notes in Mathematics, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0068610

Download citation

  • DOI: https://doi.org/10.1007/BFb0068610

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-05467-2

  • Online ISBN: 978-3-540-36653-9

  • eBook Packages: Springer Book Archive