Skip to main content

Lecture VIII a model for couette flow data

  • Conference paper
  • First Online:
Turbulence Seminar

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 615))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Adler and B. Weiss, Similarity of automorphisms of the torus, Memoirs AMS 98 (1970).

    Google Scholar 

  2. D. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature, Proc. Steklov Inst. Math. 90 (1967).

    Google Scholar 

  3. D. Anosov and Ya. Sinai, Some smooth ergodic systems, Russ. Math. Surveys 22 (1967), no. 5.

    Google Scholar 

  4. Arnold, Small denominators I, mappings of the circle onto itself, Transl. AMS, ser. 2, 56 (1965), 213–284.

    Google Scholar 

  5. R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Inventiones Math. 29 (1975), 181–202.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture notes in math. 470, Springer-Verlag.

    Google Scholar 

  7. L. Bunimovich, Central limit theorem for a class of billiards, Th. Prob. and its Appl. 19 (1974), 65–85.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Feldman, New K-automorphisms and a problem of Kakutani, preprint.

    Google Scholar 

  9. R. Fenstermacher, H. Swinney and J. Gollub, Transition to turbulence in a rotating fluid, preprint.

    Google Scholar 

  10. H. Furstenberg, The unique ergodicity of the horocycle flow, Lecture Notes in math. 318, Springer-Verlag, 95–115.

    Google Scholar 

  11. G. Gallavotti and D. Ornstein, Billiards and Bernoulli Schemes, Comm. Math. Phys. 38 (1974), 83–101.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Gollub and H. Swinney, Onset of turbulence in a rotating fluid, Phys. Rev. Letters 35 (1975), 927–930.

    Article  Google Scholar 

  13. B. Marcus, Unique ergodicity of the horocycle flow: variable negative curvature case, Israel J. Math. 21 (1975), 133–142.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Ornstein, Ergodic theory, randomness and dynamical systems, Yale Univ. Press.

    Google Scholar 

  15. D. Ornstein and B. Weiss, Geodesic flows are Bernoullian, Israel J. Math 14 (1973), 184–197.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Ratner, The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature, Israel J. Math. 16 (1973), 181–197.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Ratner, Anosov flows with Gibbs measures are also Bermoullian, Israel J. Math. 17 (1974), 380–391.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Ruelle, A measure associated with Axiom A attractors, Amer. J. Math. 98 (1976), 619–654.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Ruelle, The Lorenz attractor and the problem of turbulence, preprint.

    Google Scholar 

  20. D. Ruelle and F. Takens, On the nature of turbulence, Comm. Math. Phys. 20 (1971), 167–192.

    Article  MathSciNet  MATH  Google Scholar 

  21. Ya. Sinai, Dynamical systems with elastic relfections. Russ. Math. Surveys 25 (1970), 137–189.

    Article  MathSciNet  MATH  Google Scholar 

  22. Ya. Sinai, Gibbs measures in ergodic theory, Russ. Math. Surveys 166 (1972), 21–69.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Smale, Differentiable dynamical systems, Bull. AMS 73(1967), 747–817.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Wong, Some metric properties of piecewise monotonic mappings of the interval, preprint.

    Google Scholar 

Download references

Authors

Editor information

Peter Bernard Tudor Ratiu

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag

About this paper

Cite this paper

Bowen, R. (1977). Lecture VIII a model for couette flow data. In: Bernard, P., Ratiu, T. (eds) Turbulence Seminar. Lecture Notes in Mathematics, vol 615. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0068365

Download citation

  • DOI: https://doi.org/10.1007/BFb0068365

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08445-7

  • Online ISBN: 978-3-540-37074-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics