Advertisement

Le faisceau C de M. sato

  • Pierre Schapira
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 409)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    L. Hörmander. Uniqueness theorem and wawe front sets for solutions of linear differential equations with analytic coefficients. preptint.Google Scholar
  2. 2.
    M. Kashiwara et T. Kawaī. Pseudo-differential operator in the theory of hyperfunctions. Proc. Jap. Acad. 46, 10, 1970, pp. 1130–1134.CrossRefzbMATHGoogle Scholar
  3. 3.
    J. Leray. Le calcul differentiel et integral sur une variété analytique complexe. Bull. Soc. Math. France 87, 1959, pp. 80–81.zbMATHGoogle Scholar
  4. 4.
    A. Martineau. Les hyperfonctions de M. Sato, Sem. Bourbaki 13e année 1960–61, no 214.Google Scholar
  5. 5.
    A. Martineau. Distributions et valeurs au bord des fonctions holomorphes Proc. of the Int. Summer Institute, Lisbon 1964.Google Scholar
  6. 6.
    A. Martineau. Théorèmes sur le prolongement analytique du type "Edge of the Wedge" Sem. Bourbaki 20e année 1967–68 no 340.Google Scholar
  7. 7.
    M. Morimoto. Sur la décomposition du faisceau des germes de singularités d’hyperfonctions. J. Fac. Sci. Univ. Tokyo sect 1, 17, 1970, pp. 215–239.MathSciNetzbMATHGoogle Scholar
  8. 8.
    M. Sato. Theory of hyperfunctions. J. Fac. Univ. Tokyo sect 1, 8, 1959 60, pp. 139–193 et pp. 398–437.MathSciNetzbMATHGoogle Scholar
  9. 9.
    M. Sato et T. Kawai. Structure of hyperfunctions. Symposium on algebraic geometry and hyperfonction theory, Katata 1969 (in Japanese)Google Scholar
  10. 10.
    M. Sato et M. Kashiwara. Structure of hyperfunctions. Sugaku no Ayumi 15 (1970) pp. 9–72 (in Japanese)Google Scholar
  11. 11.
    M. Sato. Hyperfonctions and partial differential equations. Congres Int. Math. Nice 1970.Google Scholar
  12. 12.
    P. Schapira. Construction de solutions élémentaires dans le faisceau C de M. Sato. Sem. Goulaouic — Schwartz 1970–71.Google Scholar
  13. 13.
    P. Schapira. Théorie des hyperfonctions. Lecture Notes in Math Springer 126–1970.Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Pierre Schapira

There are no affiliations available

Personalised recommendations