Advertisement

Some exact sequences in the higher K-theory of rings

Toward Some Calculations
Part of the Lecture Notes in Mathematics book series (LNM, volume 341)

Keywords

Exact Sequence Spectral Sequence Short Exact Sequence Grothendieck Group Discrete Valuation Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Bass, Algebraic K-theory, Benjamin, 1968.Google Scholar
  2. 2.
    K. Brown and S. M. Gersten, in preparation.Google Scholar
  3. 3.
    L. Claborn and R. Fossum, Generalizations of the notion of class group, Illinois Journal of Math. 12 (1968), 228–253.MathSciNetzbMATHGoogle Scholar
  4. 4.
    R. K. Dennis and M. R. Stein, A new exact sequence for K2 and some consequences for rings of integers, Bull. Amer. Math. Soc. 78 (1972), 600–603.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    R. K. Dennis and M. R. Stein, K2 of discrete valuation rings, to appear.Google Scholar
  6. 6.
    S. M. Gersten, Higher K-theory of rings, these proceedings.Google Scholar
  7. 7.
    S. M. Gersten, K-theory of regular schemes, to appear in Bull. Amer. Math Soc., Jan. 1973.Google Scholar
  8. 8.
    A. Grothendieck, Classes de Chern et representations lineaires des groupes discrets, Dix exposes sur la cohomologie des schemas, 215–305, North Holland, 1968.Google Scholar
  9. 9.
    R. Hartshorne, Residues and duality, Springer Lecture Notes #20.Google Scholar
  10. 10.
    D. Quillen, Higher K-theory for categories with exact sequences, to appear in proceedings of the symposium "New Developments in Topology," Oxford, June 1972.Google Scholar
  11. 11.
    D. Quillen, On the cohomology and K-theory of the general linear group over a finite field, to appear in Annals of Math.Google Scholar
  12. 12.
    J. P. Serre, Representations linéaires des groupes finis, Hermann, Collection methodes, 1967.Google Scholar
  13. 13.
    D. Sullivan, Geometric Topology, Part I, M.I.T. 1970.Google Scholar
  14. 14.
    R. G. Swan, K-theory of finite groups and orders, Springer Lecture Notes, #149 (1970).Google Scholar
  15. 15.
    Spencer Bloch, K2 and algebraic cycles, these proceedings.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

There are no affiliations available

Personalised recommendations