Characterization of Banach space through validity of Bochner theorem

  • V. Mandrekar
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 644)


Hilbert Space Banach Space Probability Measure Gaussian Measure Separable Banach Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Acosta, A. (1970). Existence and convergence of probability measures in Banach spaces. Trans. Amer. Math. Soc. 152 273–298.MathSciNetzbMATHGoogle Scholar
  2. 2.
    _____. (1975). Banach spaces of stable type and the generation of stable measures. Preprint.Google Scholar
  3. 3.
    de Acosta, A. and Samur, J. (1977). Infinitely divisible probability measures and converse Kolmogorov inequality. Preprint.Google Scholar
  4. 4.
    Araujo, A. and Giné, E. (1977). Type, cotype and Lévy measures in Banach spaces. Preprint.Google Scholar
  5. 5.
    Baxendale, P. (1976). Gaussian measures on function spaces. Amer. J. Math. 98 891–952.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bochner, S. (1955). Harmonic analysis and probability theory. University of California Press, Berkeley and L.A.zbMATHGoogle Scholar
  7. 7.
    Breiman, L. (1968). Probability. Addison-Wesley, Reading.zbMATHGoogle Scholar
  8. 8.
    Dudley, R.M. (1969). Random linear functionals. Trans. Amer. Math. Soc. 136 1–24.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fernique, X. (1971). Integrabilité des vecteurs Gaussien. C.R. Acad. Sc. Paris, Série, A, 270 1698–1699.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Garling, D.J.H. (1973). Random measures and embedding theorems. Lecture Notes, Cambridge University.Google Scholar
  11. 11.
    Gross, L. (1963). Harmonic analysis on Hilbert space. Mem. Amer. Math. Soc. 46.Google Scholar
  12. 12.
    Hamedani, G.H. and Mandrekar, V. (1976). Central limit problem on Lp (p ≥ 2) II. Compactness of infinitely divisible laws. Preprint (to appear in J. Mult. Analysis, 1977).Google Scholar
  13. 13.
    _____. (1977). Lévy-Khinchine representation and Banach spaces of type and cotype. Preprint.Google Scholar
  14. 14.
    Hoffman-Jørgensen, J. (1974). Sums of independent Banach space valued random variables. Studia Math. 52 159–186.MathSciNetzbMATHGoogle Scholar
  15. 15.
    Hoffman-Jørgensen, J. and Pisier, G. (1976). The law of large numbers and the central limit theorem in Banach spaces. Ann. Prob. 4 587–599.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ito, K. and Nisio, M. (1968). Sums of independent Banach space valued random variables. Osaka J. Math. 5 35–48.MathSciNetzbMATHGoogle Scholar
  17. 17.
    Jain, N. (1976). Central limit theorem in a Banach space. Lectures Notes #526, Springer-Verlag 114–130.Google Scholar
  18. 18.
    Kuelbs, J. (1973). A representation theorem for symmetric stable processes and stable measures on H. Z. Wahrscheinlichkeitstheorie 26 259–271.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kuelbs, J. and Mandrekar, V. (1972). Harmonic analysis on F-spaces with a basis. Trans. Amer. Math. Soc. 169 113–152.MathSciNetzbMATHGoogle Scholar
  20. 20.
    Kumar, A. and Mandrekar, V. (1972). Stable probability measures on Banach spaces. Studia Math. 42 133–144.MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kwapien, S. (1972). Isomorphic characterizations of inner-product spaces by orthogonal series with vector valued coefficients. Studia Math 44 583–595.MathSciNetzbMATHGoogle Scholar
  22. 22.
    Landau, H.J. and Shepp, L.A. (1971). On the supremum of a Gaussian process. Sankhya, Series A, 369–378.Google Scholar
  23. 23.
    Loéve, M. (1963). Probability Theory. 3rd Ed., Van Nostrand, Princeton.zbMATHGoogle Scholar
  24. 24.
    Mandrekar, V. (1974). Multiparameter Gaussian processes and their Markov property. Lecture Notes, EPF, Lausanne.zbMATHGoogle Scholar
  25. 25.
    _____. (1975). On Bochner and Lévy theorems on Orlicz spaces. Proc. Conf. on Prob. Theo. on Groups and Vector Space, Rome (to appear Symposia Mathematica, Academic Press).Google Scholar
  26. 26.
    _____. (1976). Central limit problem on Lp (p ≥ 2) I: Lévy-Khinchine representation. Lecture Notes #526, Springer-Verlag.Google Scholar
  27. 27.
    _____. (1977). Lévy-Kninchine representation and Banach space type. Preprint.Google Scholar
  28. 28.
    Maurey, B. and Pisier, G. (1974). Series de variables aleatories vectorielles independentes et proprietes geometriques des espaces de Banach. Preprint (to appear Studia Math.).Google Scholar
  29. 29.
    Mustari, D.K.H. (1973). Certain general questions in the theory of probability measures in linear spaces. Theor. Prob. Appl. (SIAM translation) 18 64–75.MathSciNetCrossRefGoogle Scholar
  30. 30.
    _____. (1976). On a probabilistic characterization of Hilbert space. Theor. Prob. Appl. (SIAM translation) 21 410–412.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Parthasarathy, K.R. (1967). Probability measures on metric spaces. Academic Press, New York.CrossRefzbMATHGoogle Scholar
  32. 32.
    Pietsch, A. (1967). Absolut p-summierende abbilidungen in normierten Raumen. Studia Math. 28 333–353.MathSciNetzbMATHGoogle Scholar
  33. 33.
    _____. (1968). Hilbert-Schmidt-Abbilidungen in Banach Raumen. Math. Nachr. 37 237–245.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Pisier, G. (1973). Type des espaces normes. C.R. Acad. Sc. Paris 276 1673–1676.MathSciNetzbMATHGoogle Scholar
  35. 35.
    Prohorov, Yu. V. (1956). Convergence of random processes and limit theorems in probability theory. Theor. Prob. Appl. (SIAM translation) 1 157–214.MathSciNetCrossRefGoogle Scholar
  36. 36.
    _____. (1961). The method of characteristic functionals. Proc. 4th Berkeley Sympos. Math. Stat. and Prob. II, U. of California Press, Berkeley, 403–419.Google Scholar
  37. 37.
    Prohorov, Yu. V. and Sazanov, V. (1961). Some results related to Bochner's theorem. Theor. Prob. Appl. (SIAM translation) 6 87–93.CrossRefGoogle Scholar
  38. 38.
    Sazanov, V. (1958). On characteristic functionals. Theor. Prob. Appl. (SIAM translation) 3 201–205.MathSciNetGoogle Scholar
  39. 39.
    Tortrat, A. (1967). Structure de lois infinitement divisibles dans un espace vectoriel topologique. Lecture Notes #31, Springer-Verlag 299–328.Google Scholar
  40. 40.
    _____. (1969). Sur la structure des lois infinitement divisible dans les espace vectoriels. Z. Wahrscheinlichkeitstheorie 11 311–326.MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Tortrat, A. (1965). Lois de probabilité sur un espace topologique complétement régulier et produits infinis a terms indépendants dans un groupe topologique. Ann. Inst. Henri Poincaré 1 217–237.MathSciNetzbMATHGoogle Scholar
  42. 42.
    _____. (1975). Sur les lois e(λ) dans les espaces vectoriels. Applications aux lois stables. Preprint. Lab de Prob., Univ. of Paris.Google Scholar
  43. 43.
    Vahaniya, N. (1971). Probability distributions in linear spaces. Metzierba, Tbilisi.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • V. Mandrekar
    • 1
  1. 1.Michigan State UniversityEast Lansing

Personalised recommendations