Advertisement

Logarithmic sobolev inequalities — A survey

  • Leonard Gross
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 644)

Keywords

Sobolev Inequality Gauss Measure Number Operator Logarithmic Sobolev Inequality Infinite Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    W. Beckner, Inequalities in Fourier analysis on Rn, Proc. Nat. Acad. Sci. U.S.A. 72(1975), 638–641.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    ____, Inequalities in Fourier Analysis, Ann. of Math. 102 (1975), 159–182.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    I.B. Birula and J. Mycielski, Uncertainty relations for information entropy in wave mechanics, Commun. in Math. Phys. 44(1975), 129–132.MathSciNetCrossRefGoogle Scholar
  4. [4]
    P.M. Bleher and M.I. Visik, On a class of pseudodifferential operators with an infinite number of variables, and applications. Mat. Sbornik Tom 86(128) (1971), No. 3.Google Scholar
  5. [5]
    H.J. Brascamp and E.H. Lieb, Best constants in Young's inequality, its converse, and its generalization to more than three functions, Princeton preprint 1975.Google Scholar
  6. [6]
    Yu. L. Daletzky, Differential Equations with functional derivatives and stochastic equations for generalized random processes, Dokl. Akad. Nauk SSSR 166 (1966), 1035–1038.MathSciNetGoogle Scholar
  7. [7]
    ____, Infinite dimensional elliptic operators and the corresponding parabolic equations. Uspehi Math. Nauk Vol. 22 No. 4 (136), 3–54.Google Scholar
  8. [8]
    J.P. Eckmann, Hypercontractivity for anharmonic oscillators, J. Funct. Anal. 16(1974), 388–406.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    W. Faris, Product spaces and Nelson's inequality, Helv. Phys. Acta, 48(1975) 721–730.MathSciNetGoogle Scholar
  10. [10]
    G. Feissner, Hypercontractive semigroups and Sobolev's inequality, T.A.M.S. 210(1975), 51–62.MathSciNetzbMATHGoogle Scholar
  11. [11]
    J. Glimm, Boson fields with nonlinear self-interaction in two dimensions, Comm. Math. Phys. 8(1968), 12–25.CrossRefzbMATHGoogle Scholar
  12. [12]
    L. Gross, Logarithmic Sobolev inequalities, Amer. J. of Math. 97(1975) 1061–1083.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    ____, Potential theory on Hilbert space, J. of Funct. Anal. 1(1967), 123–181.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    E. Nelson, A quartic interaction in two dimensions, in Mathematical Theory of Elementary Particles, 69–73. (R. Goodman and I. Segal, eds.) M.I.T. Press, Cambridge, Mass., 1966.Google Scholar
  15. [15]
    ____, The free Markoff field, J. of Funct. Anal. 12(1973), 211–227.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Normale Superiore di Pisa, Ser. III, 13(1959), 1–47.MathSciNetzbMATHGoogle Scholar
  17. [17]
    M.A. Piech, Some regularity properties of diffusion processes on Abstract Wiener space, J. of Funct. Anal. 8(1971), 153–172.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    J. Rosen, Sobolev inequalities for weight spaces and supercontractivity, Trans. A.M.S. 222(1976), 367–376.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    I.E. Segal, Construction of nonlinear local quantum processes, I, Ann. of Math. 92(1970), 462–481.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    ____, Construction of nonlinear local quantum processes, II, Inventiones Math., 14(1971), 211–241.CrossRefzbMATHGoogle Scholar
  21. [21]
    B. Simon and R. Hoegh-Krohn, Hypercontractive semi-groups and two dimensional self-coupled Bose Fields, J. Funct. Anal. 9(1972), 121–180.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    B. Simon, The P(Ø)2 Euclidean (Quantum) field theory, Princeton Univ. Press, Princeton, N.J. (1974).Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Leonard Gross
    • 1
  1. 1.Department of MathematicsCornell UniversityUSA

Personalised recommendations