P-adic interpolation and continuation of p-adic functions

  • Hà Huy Khoai
II Section — Function Theory Of One Complex Variable
Part of the Lecture Notes in Mathematics book series (LNM, volume 1013)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    Y. Amice. Interpolation p-adique. Bull. Soc. Math. France, 92, 1964, 117–180.MathSciNetzbMATHGoogle Scholar
  2. [2].
    Y.Amice.Interpolation p-adique et transformation de Mellin-Mazur selon Hà Huy Khoai, Groupe d'étude d'analyse ultramétrique 1978/1979, janvier 1979.Google Scholar
  3. [3].
    Y.Amice et J.Vélu.Distributions p-adiques associees aux series de Hecke. Journees arithmétiques, Bordeaux, 1974, Asterisque, 24–25.Google Scholar
  4. [4].
    Hà Huy Khoái. On the p-adic interpolation.Matematicheskie Zametki, T.26, N.2, 1979. (in russian).Google Scholar
  5. [5].
    Hà Huy Khoái. p-adic interpolation and Mellin-Mazur transforms. Acta mathematicarum Vietnamicarum, T.5, N.2, 1980.Google Scholar
  6. [6].
    M. Lazard. Les zeros d'une fonction analytique d'une variable sur un corps valué complet.Publ.Math.IHES, N14.Google Scholar
  7. [7].
    Yu.I. Manin. Periods of cusps form and p-adic Hecke series. Mat. Sbornik, 92(134), 3(1973) (in russian)MathSciNetGoogle Scholar
  8. [8].
    B.Mazur. A meromorphic continuation of the Gauss sum. Preprint.Google Scholar
  9. [9].
    M. van der Put. The non-Archimedean corona problem. Table ronde anal. non-arch. (1972). Bull. Soc. Math. France, Mémoire 39–40, 1974,287–317.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Hà Huy Khoai

There are no affiliations available

Personalised recommendations