Advertisement

The heat equation in riemannian geometry

  • M. F. Atiyan
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 431)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.F. Atiyah and R. Bott, A Lefschetz fixed-point formula for elliptic complexes I, Ann. of Math. 86 (1967), 374–407.zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    M.F. Atiyah, R. Bott and V.K. Patodi, On the heat equation and the index theorem, Inventiones Math. 19 (1973), 279–330.zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    M.F. Atiyah, V.K. Patodi, and I.M. Singer, Spectral asymmetry and Riemannian geometry, Bull. London Math. Soc. 5 (1973), 229–234.zbMATHMathSciNetGoogle Scholar
  4. 4.
    M.F. Atiyah and I.M. Singer, The index of elliptic operators I, Ann. of Math. 87 (1968), 484–530.zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    P. Gilkey, Curvature and the eigenvalues of the Laplacian for elliptic complexes, Advances in Mathematics (to appear).Google Scholar
  6. 6.
    V.K. Patodi, Curvature and the eigenforms of the Laplace operator, J. Doff. Geometry 5 (1971), 233–249.zbMATHMathSciNetGoogle Scholar
  7. 7.
    V.K. Patodi, An alalytic proof of the Riemann-Roch-Hirzebruch theorem for Kaehler manifolds, J.Diff. Geometry 5 (1971), 251–283.zbMATHMathSciNetGoogle Scholar

Copyright information

© N. Bourbaki 1975

Authors and Affiliations

  • M. F. Atiyan

There are no affiliations available

Personalised recommendations