Advertisement

The approximate first-order and second-order directional derivatives for a convex function

Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 979)

Key Words

convex functions ɛ-subdifferential approximate first-order directional derivative approximate second-order directional derivative generalized second derivatives 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.D. ALEXANDROV. The existence almost everywhere of the second differential of a convex function and some associated properties of convex surfaces (in Russian), Učenye Zapiski Leningr. Gos. Univ. Ser. Mat. 37 no6 (1939), 3–35.Google Scholar
  2. [2]
    E. ASPLUND and R.T. ROCKAFELLAR, Gradients of convex functions, Trans. Amer. Math. Soc. 139 (1969), 443–467.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. AUSLENDER, Differential properties of the support function of the ɛ-subdifferential or a convex function, Note aux Comptes Rendus Acad. Sc. Paris, t. 292 (1981), 221–224 & Math. Programming, to appear.MathSciNetGoogle Scholar
  4. [4]
    A. AUSLENDER, Stability in mathematical programming with nondifferentiable data; second-order directional derivative for lower-C 2 functions. Preprint 1981.Google Scholar
  5. [5]
    M.L. BALINSKI and P. WOLFE, editors, Nondifferentiable Optimization, Math. Programming Study 3, North-Holland (1975).Google Scholar
  6. [6]
    A. BRØNDSTED and R.T. ROCKAFELLAR, On the subdifferentiability of convex functions, Proc. Amer. Math. Soc. 16 (1965), 605–611.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    H. BUSEMANN, Convex Surfaces, Interscience Tracts in Pure and Applied Mathematics, 1958.Google Scholar
  8. [8]
    F.H. CLARKE, Generalized gradients and applications, Trans. Amer. Math. Soc. 205, (1975), 247–262.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    F.H. CLARKE, Generalized gradients of Lipschitz functionals, Advances in Mathematics 40, (1981), 52–67.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    F.H. CLARKE, Nonsmooth Analysis and Optimization, John Wiley & Sons, book to appear in 1983.Google Scholar
  11. [11]
    J.-P. CROUZEIX, Contributions à l’étude des fonctions quasiconvexes, Thèse de Doctorat Es Sciences Mathématiques, Université de Clermont-Ferrand II, (1977).Google Scholar
  12. [12]
    V.F. DEM’YANOV and V.N. MALOZEMOV, Introduction to Minimax, John Wiley & Sons, 1974.Google Scholar
  13. [13]
    R.M. DUDLEY, On second derivatives of convex functions, Math. Scand. 41 (1977), 159–174 & 46 (1980), 61.MathSciNetzbMATHGoogle Scholar
  14. [14]
    J.-B. HIRIART-URRUTY, Lipschitz r-continuity of the approximate subdifferential of a convex function, Math. Scand. 47 (1980), 123–134.MathSciNetzbMATHGoogle Scholar
  15. [15]
    J.-B. HIRIART-URRUTY, ɛ-subdifferential calculus, in Proceedings of the Colloquium "Convex Analysis and Optimization", Imperial College, London (28–29 February 1980), to appear in 1982.Google Scholar
  16. [16]
    J.-B. HIRIART-URRUTY, Approximating a second-order directional derivative for nonsmooth convex functions, SIAM J. on Control and Optimization, to appear in 1982.Google Scholar
  17. [17]
    J.-B. HIRIART-URRUTY, Limiting behaviour of the approximate first-order and second-order directional derivatives for a convex function, Nonlinear Analysis: Theory, Methods & Applications, to appear in 1982.Google Scholar
  18. [18]
    J.-B. HIRIART-URRUTY, Calculus rules on the approximate second-order directional derivative of a convex function, in preparation.Google Scholar
  19. [19]
    B. JESSEN, Om konvekes Kurvers Krumning, Mat. Tidsskr. B (1929), 50–62.zbMATHGoogle Scholar
  20. [20]
    S.S. KUTATELADZE, Convex ɛ-programming. Soviet Math. Dokl. 20 (1979), 391–393.MathSciNetzbMATHGoogle Scholar
  21. [21]
    S.S. KUTATELADZE, ɛ-subdifferentials and ɛ-optimization (in Russian), Sibirskii Matematicheskii Journal (1980), 120–130.Google Scholar
  22. [22]
    C. LEMARECHAL and R. MIFFLIN, editors, Nonsmooth Optimization, I.I.A.S.A. Proceedings Series, Pergamon Press (1978).Google Scholar
  23. [23]
    C. LEMARECHAL, Extensions Diverses des Méthodes de Gradient et Applications, Thèse de Doctorat Es Sciences Mathématiques, Paris (1980).Google Scholar
  24. [24]
    C. LEMARECHAL and E.A. NURMINSKII, Sur la différentiabilité de la fonction d’appui du sous-différentiel approché, Note aux Comptes Rendus Acad. Sc. Paris, t. 290 (1980), 855–858.MathSciNetzbMATHGoogle Scholar
  25. [25]
    C. LEMARECHAL, Some remarks on second-order methods for convex optimization, Meeting "Optimization: Theory & Algorithms" Confolant, 16–20 March 1981.Google Scholar
  26. [26]
    C. LEMARECHAL, personal communication (March 1981).Google Scholar
  27. [27]
    F. MIGNOT, Contrôle dans les inéquations variationnelles elliptiques, J. of Functional Analysis, Vol. 22 (1976), 130–185.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    F. MIGNOT, personal communication (February 1981).Google Scholar
  29. [29]
    E. A. NURMINSKII, on ɛ-differential mapping and their applications in nondifferentiable optimization, Working paper 78–58, I.I.A.S.A., December 1978.Google Scholar
  30. [30]
    R.-T. ROCKAFELLAR, Convex Analysis, Princeton University Press, 1970.Google Scholar
  31. [31]
    R.-T. ROCKAFELLAR, Monotone operators and the proximal point algorithm, SIAM J. Control & Optimization 14 (1976), 877–898.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    J.-J. STRODIOT, NGUYEN VAN HIEN and N. HEUKEMES, ɛ-optimal solutions in nondifferentiable convex programming and some related questions. Department of Mathematics, University of Namur, preprint 1980.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  1. 1.Université Paul Sabatier (TOULOUSE III) U.E.R. Mathématiques, Informatique, GestionToulouse CedexFrance

Personalised recommendations