Advertisement

Sur les Nombres Derives D’une Fonction

  • Michel Bruneau
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 413)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    H. BLUMBERG The measurable boundaries of an arbitrary function. Acta Math. 65 (1939), 263–282.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M. BRUNEAU C. R. Acad. Sc. ParisGoogle Scholar
  3. [3]
    A. DENJOY Mémoire sur les nombres dérivés des fonctions continues. J. Math. 7, 1 (1915), 105–240.zbMATHGoogle Scholar
  4. [4]
    A. DENJOY Mémoire sur la dérivation et son calcul inverse. Gauthier-Villars, Paris (1954).zbMATHGoogle Scholar
  5. [5]
    E. H. HANSON A theorem of Denjoy, Young and Saks. Bull. Amer. Math. Soc. 40 (1934), 691–694.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    F. RIESZ et B. Sz. NAGY Leçons d’analyse fonctionnelle. Gauthier-Villars, Paris et Akadémiai Kiado, Budapest (1965).zbMATHGoogle Scholar
  7. [7]
    S. SAKS Sur les nombres dérivés des fonctions. Fund. Math. 5 (1924), 98–104.zbMATHGoogle Scholar
  8. [8]
    G. C. YOUNG On infinite derivates. Quat. J. Math. 47, 148–15.Google Scholar
  9. [9]
    G. C. YOUNG On the derivates of a function. Proc. London Math. Soc. 2, 15 (1916), 360–384.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Michel Bruneau

There are no affiliations available

Personalised recommendations