Advertisement

Variation Totale D’une Fonction

  • Michel Bruneau
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 413)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    R. BAIRE Leçons sur les fonctions discontinues. Gauthier-Villars, Paris (1905).zbMATHGoogle Scholar
  2. [2]
    N. K. BARY A treatise on trigonometric series. Translation by M. F. Mullins. Pergamon Press, Oxford (1964).zbMATHGoogle Scholar
  3. [3]
    A. S. BESICOVITCH On existence of subsets of finite measure of sets of infinite measure. Indag. Math. 14 (1952), 339–344.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    E. BOREL Leçons sur les fonctions de variables réelles. Gauthier-Villars, Paris (1928).zbMATHGoogle Scholar
  5. [5]
    B. H. BROWNE A measure of the real line constructed from an arbitrary point function. Proc. London Math. Soc., 3, 27 (1973), 1–21.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    M. BRUNEAU Mesures de Carathéodory et variation totale d’une fonction. C. R. Acad. Sc. Paris, 274 (19 ), 1801–1804.Google Scholar
  7. [7]
    M. BRUNEAU Variation totale d’une fonction. C. R. Acad. Sc. Paris, 276, 681–683.Google Scholar
  8. [8]
    M. BRUNEAU Fonctions à variation σ-bornée. Mesure de Lebesgue-Stieltjes associée à une fonction f:R-R arbitraire. C. R. Acad. Sc. ParisGoogle Scholar
  9. [9]
    C. CARATHEODORY Vorlesungen über reelle Funktionen. Teubner, Leipzig (1927).CrossRefzbMATHGoogle Scholar
  10. [10]
    R. O. DAVIES A property of Hausdorff measure. Proc. Cambridge Phil. Soc. 52 (1956), 30–32.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    R. O. DAVIES Measures of Hausdorff type. J. London Math. Soc., 2, 1 (1970), 30–34.MathSciNetzbMATHGoogle Scholar
  12. [12]
    R. O. DAVIES and C. A. ROGERS The problem of subsets of finite positive measure. Bull. London Math. Soc. 1 (1969), 47–54.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    C. DELLACHERIE Ensembles analytiques, Capacités, Mesures de Hausdorff. Lecture Notes in Math. 295 (1972).Google Scholar
  14. [14]
    A. DENJOY Mémoire sur les nombres dérivés des fonctions continues. J. Math. Pures et Appl., 7, 1 (1915), 105–240.zbMATHGoogle Scholar
  15. [15]
    A. DENJOY Mémoire sur la dérivation et son calcul inverse. Gauthier-Villars, Paris (1954).zbMATHGoogle Scholar
  16. [16]
    N. DUNFORD and J. T. SCHWARTZ Linear operator I. Interscience, New York (1957).Google Scholar
  17. [17]
    A. DVORETSKY A note on Hausdorff dimension functions. Proc. Cambridge Phil. Soc. 44 (1948), 13–16.MathSciNetCrossRefGoogle Scholar
  18. [18]
    H. FEDERER Geometric measure theory. Springer-Verlag, 153 (1969).Google Scholar
  19. [19]
    G. FICHTENHOLZ Note sur les fonctions absolument continues. Rec. Math. Soc. Math. Moscou, 31 (1923), 286–295.zbMATHGoogle Scholar
  20. [20]
    M. FRECHET Sur quelques définitions possibles de l’intégrale de Stieltjes. Duke Math. J. 2 (1936), 283–395.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    R. G. GOLBERG On a space of functions of Wiener. Duke Math. J. 34 (1967), 683–691.MathSciNetCrossRefGoogle Scholar
  22. [22]
    L. M. GRAVES The theory of functions of real variables. McGraw-Hill (1946).Google Scholar
  23. [23]
    H. HAHN Theorie der reellen Funktionen. 1. Berlin (1921).Google Scholar
  24. [24]
    H. HAHN Reelle Funktionen, 1. Leipzig (1932).Google Scholar
  25. [25]
    P. HALMOS Measure theory. Van Nostrand, New York (1950).CrossRefzbMATHGoogle Scholar
  26. [26]
    G. H. HARDY Weierstrass’s non differentiable function. Trans. Amer. Math. Soc. 17 (1916), 301–325.MathSciNetzbMATHGoogle Scholar
  27. [27]
    F. HAUSDORFF Dimension und äusseres Mass. Math. Ann. 79 (1918), 157–179.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    E. HILLE and J. D. TAMARKIN Remarks on a known example of a monotone continuous function. Amer. Math. Monthly 36 (1929), 255–264.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    E. W. HOBSON The theory of functions of a real variable and the theory of Fourier’s series. Dover Publ., New York, vol. 1, 3 ed. (1927).zbMATHGoogle Scholar
  30. [30]
    R. L. JEFFERY Non-absolutely convergent integrals with respect to functions of bounded variation. Trans. Amer. Math. Soc. 34 (1932), 645–675.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    R. L. JEFFERY Derived numbers with respect to functions of bounded variation. Trans. Amer. Math. Soc. 36 (1934), 749–758.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    C. JORDAN Cours d’Analyse. Vol. I, p. 55.Google Scholar
  33. [33]
    J.-P. KAHANE Sur l’exemple, donné par H. de Rham, d’une fonction continue sans dérivée. L’Enseignement des Math., t. V, 1 (1959), 53–57.MathSciNetzbMATHGoogle Scholar
  34. [34]
    J.-P. KAHANE Courbes étranges, ensembles minces.Google Scholar
  35. [35]
    J.-P. KAHANE et R. SALEM Ensembles parfaits et séries trigonométriques. Paris, Hermann, 1963.zbMATHGoogle Scholar
  36. [36]
    R. KAUFMAN Measures of Hausdorff type and brownian motion. Mathematika 19 (1972), 115–119.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    A. KHINTCHINE Sur le procédé d’intégration de M. Denjoy. Rec. Math. Soc. Math. Moscou, 30 (1918), 543–557.zbMATHGoogle Scholar
  38. [38]
    A. KHINTCHINE Recherches sur la structure des fonctions mesurables. Fund. Math. 9 (1927), 212–279.zbMATHGoogle Scholar
  39. [39]
    H. LEBESGUE Leçons sur l’intégration et la recherche des fonctions primitives. Paris, Gauthier-Villars, 1950.zbMATHGoogle Scholar
  40. [40]
    J. E. LITTLEWOOD The elements of the theory of real functions. Cambridge, 2nd ed., 1926.Google Scholar
  41. [41]
    E. R. LOVE A generalization of absolute continuity. J. London Math. Soc. 26 (1951), 1–13.MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    N. N. LUSIN C. R. Acad. Sc. Paris, 1912.Google Scholar
  43. [43]
    N. N. LUSIN Lusin’s collected works.Google Scholar
  44. [44]
    J. MARCINKIEWICZ Sur les nombres dérivés. Fund. Math. 24 (1935), 305–308.zbMATHGoogle Scholar
  45. [45]
    H. MILICER-GRUZEWKA Sur la continuité de la variation. C. R. Soc. Sc. Varsovie 21 (1928), 165–176.Google Scholar
  46. [46]
    G. MOKOBODSKI et M. ROGALSKI Sur les espaces uniformément fermés de fonctions à variation bornée. C. R. Acad. Sc. Paris 274, 1225–1228.Google Scholar
  47. [47]
    J. MUSIELAK and W. ORLICZ On space of functions of finite generalized variation. Bull. Acad. pol. Sc. 3, 5 (1957), 389–392.MathSciNetzbMATHGoogle Scholar
  48. [48]
    J. MUSIELAK and W. ORLICZ On generalized variation I. Studia Math. 18 (1959), 11–41.MathSciNetzbMATHGoogle Scholar
  49. [49]
    J. NEVEU Bases mathématiques du calcul des probabilités. Paris, Masson, 1964.zbMATHGoogle Scholar
  50. [50]
    S. POLLARD The Stieltjes integral and its generalizations. Quat. J. Math. Oxford 49 (1920), 87–94.Google Scholar
  51. [51]
    A. RAJCHMAN and S. SAKS Sur la dérivabilité des fonctions monotones. Fund. Math. 4 (1923), 204–213.zbMATHGoogle Scholar
  52. [52]
    F. RIESZ et B. Sz. NAGY Leçons d’analyse fonctionnelle. Paris, Gauthier-Villars et Budapest, Akadémia Kiado, 1965.zbMATHGoogle Scholar
  53. [53]
    C. A. ROGERS Hausdorff measures. Cambridge Univ. Press 1970.Google Scholar
  54. [54]
    R. SALEM Oeuvres Mathématiques. Paris, Hermann, 1967.zbMATHGoogle Scholar
  55. [55]
    W. SIERPINSKI Démonstration de la dénombrabilicité des valeurs extrémales d’une fonction. C. R. Soc. Sc. Varsovie 5 (1912), 232–237.Google Scholar
  56. [56]
    W. SIERPINSKI Sur l’ensemble des points angulaires d’une courbe y = f(x). Bull. Acad. Sc. Cracovie 1912, 850–855.Google Scholar
  57. [57]
    W. SIERPINSKI Un exemple élémentaire d’une fonction croissante qui a presque partout une dérivée nulle. Giorn. Mat. Battaglini 3, 7 (1916), 314–334.zbMATHGoogle Scholar
  58. [58]
    J.-P. SCHREIBER Fonction de Peano et dimension de Hausdorff. Enseign. Math. 13 (1968), 325–328.MathSciNetzbMATHGoogle Scholar
  59. [59]
    E. C. TITCHMARSH The theory of functions. Oxford Univ. Press, 2nd ed. 1939.Google Scholar
  60. [60]
    A. J. WARD On the differential structure of real functions. Proc. London Math. Soc. 2, 39 (1935), 339–362.MathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    D. WATERMANN On the convergence of Fourier series of functions of generalized bounded variation. Studia Math. 44 (1972), 107–117.MathSciNetGoogle Scholar
  62. [62]
    A. ZYGMUND Trigonometric series. Cambridge Univ. Press 1959.Google Scholar
  63. [63]
    S. SAKS Theory of the integral. Hafner Publ. Cny, New York 1937.zbMATHGoogle Scholar
  64. [64]
    A. KOLMOGOROFF und J. VERCENKO Ueber Unstetigkeitspunkte von Funktionen zweier Verändelichen. C. R. Acad. Sc. URSS, 1, 1–3 (1934), 105–107.zbMATHGoogle Scholar
  65. [65]
    A. KOLMOGOROFF und J. VERCENKO Weitere Untersuchungen über Unstetigkeitspunkte von Funktionen zweier Veränderlichen. C. R. Acad. Sc. URSS 4 (1934), 361–364.zbMATHGoogle Scholar
  66. [66]
    A. M. BRUCKNER A note on measures determined by continuous functions. Canad. Math. Bull. 15, 2 (1972), 289–291.MathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    J. H. BURRY and H. W. ELLIS On measures determined by continuous functions that are not of bounded variation. Canad. Math. Bull. 13, 1 (1970), 121–124.MathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    H. W. ELLIS and R. L. JEFFERY On measure determined by functions with finite right and left limits everywhere. Canad. Math. Bull. 10, 2 (1967), 207–225.MathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    H. WELLIS and R. L. JEFFERY Derivatives and integrals with respect to a base of function of generalized variation. Canad. J. Math. 19 (1967), 225–241.MathSciNetCrossRefGoogle Scholar
  70. [70]
    D. N. SARKHEL On measures induced by an arbitrary function and integrals relative to a function of bounded residual variation. Rev. Roum. Math. Pures et Appl. XVIII, 6, 927–949.Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Michel Bruneau

There are no affiliations available

Personalised recommendations