Advertisement

Fonctions a p-variation bornee

  • Michel Bruneau
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 413)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    BRETAGNOLE, J.Google Scholar
  2. [2]
    BRUNEAU, M. Calcul de la p-variation d’une fonction. C. R. Acad. Sc. Paris, t. 265, pp. 173–176.Google Scholar
  3. [3]
    BRUNEAU, M. p-variation fine d’une fonction à p-variation bornée. C. R. Acad. Sc. Paris, t. 270, pp. 585–588.Google Scholar
  4. [4]
    BRUNEAU, M. Fonctions p,α-fines et fonctions p-fines. C. R. Acad. Sc. Paris, t. 270, pp. 1420–1423.Google Scholar
  5. [5]
    BRUNEAU, M. Thèse. Strasbourg, 1970. A paraître.Google Scholar
  6. [6]
    GEHRING, F. W. A study of α-variation. Trans. Amer. Math. Soc., 76 (1954), 420–443.MathSciNetzbMATHGoogle Scholar
  7. [7]
    GOFFMAN, G. and LOUGHLIN, J. J. Strong and weak φ-variation of brownian motion. Indiana Univ. Math. J., 22 (1972), 135–138.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    GOLOUBOV, V. I. Fonctions de variation totale généralisée. Convergence de leurs séries de Fourier ... (en russe). Doklady Akademii Nauk SSSR, 205 (1972), 1277–1280.MathSciNetGoogle Scholar
  9. [9]
    MARCINKIEWICZ, J. On a class of functions and their Fourier series. Collected papers, 36–41.Google Scholar
  10. [10]
    SALEM, R. Essais sur les séries trigonométriques. Act. Sc. et Ind., 862, Paris 1940.Google Scholar
  11. [11]
    WIENER, N. The quadratic variation of a function and its Fourier coefficients. J. Mass. Inst. of Technology, 3 (1924), 73–94.zbMATHGoogle Scholar
  12. [12]
    YOUNG, L. C. An inequality of the Hölder type connected with Stieltjes integration. Acta Math., 67 (1936), 251–282.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    YOUNG, L. C. Inequalities connected with bounded p-th power variation in the Wiener sense and with integrated Lipschitz conditions. Proc. London Math. Soc., 2, 43 (1937), 449–467.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Michel Bruneau

There are no affiliations available

Personalised recommendations