Skip to main content

The strength of the Hahn-Banach theorem

Part of the Lecture Notes in Mathematics book series (LNM,volume 369)

Keywords

  • Boolean Algebra
  • Choice Function
  • Linear Extension
  • Order Type
  • Countable Subset

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0066014
  • Chapter length: 46 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   34.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-37928-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   46.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. J. L. Bell and D. H. Fremlen, A geometric form of the axiom of choice, Fund. Math. (1972), to appear.

    Google Scholar 

  2. P. J. Cohen, Independence of the axiom of choice, mimeographed notes, Stanford University.

    Google Scholar 

  3. P. J. Cohen, Set Theory and the Continuum Hypothesis, Benjamin, 1966

    Google Scholar 

  4. M. M. Day, Normed Linear Spaces, Springer, 1962.

    Google Scholar 

  5. S. Fefferman, Some applications of the notions of forcing and generic set, Fund. Math. 56 (1965), pp. 325–345.

    MathSciNet  Google Scholar 

  6. J. D. Halpern and H. Lauchli, A partition theorem, Trans. A.M.S. 124 (1966), pp. 360–367.

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. J. D. Halpern and A. Levy, the Boolean prime ideal theorem does not imply the axiom of choice, Proc. Symp. Pure Math. Vol. XIII Part I, pp. 83–134.

    Google Scholar 

  8. T. Jech and A. Sochor, Applications of the ϑ model, Bull. Acad. Polon. Ser. Sec. 14 (1966), pp. 351–355.

    MathSciNet  MATH  Google Scholar 

  9. J. Los and C. Ryll-Nardzewski, Effectiveness of the representation theory for Boolean algebras, Fund. Math. 41 (1954), pp. 49–56.

    MathSciNet  MATH  Google Scholar 

  10. J. Los and C. Ryll-Nardzewski, On the applications of Tychanov’s theorem in mathematical proofs, Fund. Math. 38 (1951), pp. 233–237.

    MathSciNet  MATH  Google Scholar 

  11. W. A. J. Luxemburg, 2 applications of the method of construction by ultrapowers to analysis, Bull. A.M.S. 68 (1962), pp. 416–419.

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. W. A. J. Luxemburg, Reduced powers of the real number system and equivalents of the Hahn-Banach extension theorem, Int. Sympos on the Application of Model Theory to Alg. Anal. and Probability, Holt, Rinehart and Winston 1969.

    Google Scholar 

  13. J. Mycielski, Two Remarks on Tychonoff’s Product Theorem, Bull. Akad. Polon. Ser. Sci. 12 (1964), pp. 439–441.

    MathSciNet  MATH  Google Scholar 

  14. D. Pincus, Support structures for the axiom of choice, J.S.L. 35 (1971), pp. 28–38.

    MathSciNet  MATH  Google Scholar 

  15. D. Pincus, Zermelo Fraenkel consistency results by Fraenkel Mostowski Methods J.S.L. (to appear).

    Google Scholar 

  16. D. Pincus, Nonperfect sets, Baire diagonal sets, and well ordering the continuum. Submitted for publication.

    Google Scholar 

  17. D. Pincus, Independence of the Prime Ideal theorem from the Hahn Banach Theorem Bull. A.M.S. 78 (1972), to appear.

    Google Scholar 

  18. J. R. Shoenfield, Mathematical Logic, Addision Wesley (1967).

    Google Scholar 

  19. J. R. Shoenfield, Unramified Forcing, Proc. Symp. Pure Math. XIII Vol. I, pp. 357–381.

    Google Scholar 

  20. R. M. Solovay, A model of set theory in which every set of reals is Lesbague measurable Ann. of Math. 92 (1970), pp. 1–58.

    CrossRef  MathSciNet  MATH  Google Scholar 

  21. W. Sierpinski, Sur un probleme conduisant a un ensemble non measurable, Fund. Math. 10 (1927), pp. 177–179.

    MATH  Google Scholar 

  22. W. Sierpinski, Functions additives non completement additives et functions non measurables, Fund. Math. 30 (1938), pp. 96–99.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1974 Springer-Verlag

About this paper

Cite this paper

Pincus, D. (1974). The strength of the Hahn-Banach theorem. In: Hurd, A., Loeb, P. (eds) Victoria Symposium on Nonstandard Analysis. Lecture Notes in Mathematics, vol 369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0066014

Download citation

  • DOI: https://doi.org/10.1007/BFb0066014

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-06656-9

  • Online ISBN: 978-3-540-37928-7

  • eBook Packages: Springer Book Archive