Advertisement

Noyaux potentiels sur ℝ+

  • Gunnar Forst
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 681)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    Berg, C. et G. Forst: Potential Theory on Locally Compact Abelian Groups. Berlin-Heidelberg-New York. Springer 1975.CrossRefzbMATHGoogle Scholar
  2. 2.
    Davidson, R.: Arithmetic and Other Properties of Certain Delphic Semigroups II. Z. Wahrscheinlichkeitstheorie verw. Geb. 10 (1968), 146–172.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hawkes, J.: On the potential theory of Subordinators. Z. Wahrscheinlichkeitstheorie verw. Geb. 33 (1975), 113–132.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hirsch, F.: Familles d’opérateurs potentiels. Ann. Inst. Fourier, Grenoble 253–4 (1975), 263–288.Google Scholar
  5. 5.
    Itô, M.: Sur les cones convexes de Riesz et les noyaux complètement sous-harmoniques. Nagoya Math. J. 55 (1974), 111–144.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kaluza, T.: Über die Koeffizienten reziproker Potenzreihen. Math. Z. 28 (1928), 161–170.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kendall, D.G.: Renewal sequences and their arithmetic. In Lecture Notes in Mathematics 31, p. 147–175. Berlin-Heidelberg-New York. Springer 1967.Google Scholar
  8. 8.
    Kingman, J.F.C.: Regenerative Phenomena. London.Wiley 1972.zbMATHGoogle Scholar
  9. 9.
    Reuter, G.E.H.: Über eine Volterrasche Integralgleichung mit totalmonotonem Kern. Arch. Math. 7 (1956), 59–66.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Widder, D.V.: The Laplace transform. Princeton. Princeton University Press. 1941.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Gunnar Forst
    • 1
  1. 1.Universitetsparken 5København ØDanemark

Personalised recommendations