Advertisement

Sur les invariants homologiques des anneaux locaux noetheriens: Un calcul de la cinquieme deflection ɛ5

  • Michel Paugam
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 641)

Keywords

Local Ring Nous Allons Local Gorenstein Ring Peut Supposer Obtient Alors 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    M. AUSLANDER et M. BRIDGER.-Stable module theory memoirs of the american mathematical society no94, (1969).Google Scholar
  2. [2]
    L.L. AVRAMOV.-On the Hopf algebra of a local ring math. U.S.S.R. Izvestija Vol. 8, no2, (1974), p.259–284.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    L.L. AVRAMOV et E.S. GOLOD.-Homology algebra of the Koszul complex of a local Gorenstein ring. Mathematical notes, vol. 9, (1971) p.30–32.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    E.S. GOLOD.-On the homology of some local rings Soviet Math. Dokl. 3 (1962) p.745–748.zbMATHGoogle Scholar
  5. [5]
    T.H. GULLIKSEN.-A proof of the existence of minimal R-algebra resolutions.-Acta. Math., 120 (1968) p.53–58.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    T.H. GULLIKSEN.-A homological characterization of local complete intersections.-Compositio Mathematica, vol 23, Fasc.3, (1971) p.251–255.MathSciNetzbMATHGoogle Scholar
  7. [7]
    V.K.A.M. GUGENHEIM et J.P. MAY.-On the theory and applications of differential torsion products.-Memoirs of the American mathematical society no142, (1974).Google Scholar
  8. [8]
    G. LEVIN.-Local rings and Golod homomorphisms. Journal of Algebra 37, (1975) p.266–289.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    J.P. MAY.-Matric massey products.-Journal of Algebra 12, (1969) p.533–568.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M. PAUGAM. — Sur les invariants homologiques des anneaux locaux noethériens: un calcul de la cinquième déflection — comptes rendus de l'Académie des Sciences-Paris — à paraitre.Google Scholar
  11. [11]
    H. RAHBAR ROCHANDEL.-Relation entre la série de Betti d'un anneau local de Gorenstein R. et celle de l'anneau R/socle(R)-Séminaire Paul Dubreil Université Pierre et Marie Curie 1976/77. Exposé du 13.12.76Google Scholar
  12. [12]
    M. SAKUMA et H. OKUYAMA.-On the Betti series of local rings. Journal of Mathematics — Tokushima University Vol 1, (1967), p.1–10 et Correction vol 2, (1968), p.31–32.MathSciNetzbMATHGoogle Scholar
  13. [13]
    M. SAKUMA et H. OKUYAMA.-A note on higher déflections of a local ring. — Journal of Math. Tokushima University vol. 3, (1969), p.25–36.MathSciNetzbMATHGoogle Scholar
  14. [14]
    G. SCHEJA.-Über Bettizahlen lokaler Ringe. Math. Annalen 155, (1964), p.155–172.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    J.P. SERRE.-Algèbre locale multiplicités.-Lecture Notes in Mathematics no11, Berlin, Springer-Verlag, (1965).zbMATHGoogle Scholar
  16. [16]
    J. TATE.-Homology of noetherian rings and local rings, Illinois J. Math. 1, (1957), p.14–27.MathSciNetzbMATHGoogle Scholar
  17. [17]
    H. UEHARA.-Homological invariants of local rings. Nagoya Math. J. 22 (1963) p.219–227.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    H. WIEBE.-Uber homologische Invarianten lokaler Ringe. math. Annalen 179 (1969), p.257–274.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Michel Paugam
    • 1
  1. 1.Université de CeanCaen Cedex

Personalised recommendations