Advertisement

Decomposition of exterior and symmetric powers of indecomposable Z/pZ-modules in characteristic p and relations to invariants

  • Gert Almkvist
  • Robert Fossum
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 641)

Keywords

Exact Sequence Symmetric Function Polynomial Ring Formal Power Series Hilbert Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

VIII. References

  1. ALMKVIST, G: Endomorphisms of finitely generated projective modules over a commutative ring. Arkiv förmatematik 11, 263–301 (1973).MathSciNetCrossRefzbMATHGoogle Scholar
  2. ATIYAH, M.F. and I.G. MAC DONALD: "Introduction to Commutative Algebra". Reading, Massachusetts: Addison-Wesley 1969.Google Scholar
  3. BASS, H.: Algebraic K-theory. New York: Benjamin 1968.zbMATHGoogle Scholar
  4. BERTIN,M.J.: Anneaux d'invariants d'anneaux de polynĉmes, en caractéristique p. C.R. Acad. Sci. Paris ser. A.246.Google Scholar
  5. BURNSIDE, W.: "Theory of groups of Finite Order". sec. ed. Cambridge Univ. Press. New York.Google Scholar
  6. CARTER, R.W. and G. LUSZTIG: On the modular representations of the general linear and symmetric group. Math. Zeit 136, 193–242 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  7. DE CONCINE, C. and C. PROCESI: A characteristic free approach to invariant theory. Adv. Math. 19, 306–381 (1976).CrossRefGoogle Scholar
  8. DIEUDONNE, J. and J.B. CARRELL: Invariant Theory, old and new. New York: Academic Press 1971.zbMATHGoogle Scholar
  9. DOUBILET, P and G-C ROTA: Skew-Symmetric Invariant Theory. Advances in Math. 21, 196–201 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  10. DOUBILET, P, G-C ROTA and J. STEIN: On the foundations of combinatorial theory.IX, Combinatorial Methods in invariant theory. Studies in Applied Math. 53.185–216 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  11. EVANS,R.J. and I.M. ISAACS: Generalized Van der Monde Determinants and roots of unity of prime order. Proc.Amer. Math. Soc.58 (1976)Google Scholar
  12. FOSSUM, R.M.: The Divisor Class Group of a Krull Domain. Ergeb der Math. Band 74: Bertin. Heidelberg-New York: Springer Verlag 1973.CrossRefzbMATHGoogle Scholar
  13. FOSSUM, R, HANS-BJØRN FOXBY, P.GRIFFITH and I.REITEN: Minimal Injective Resolutions with Applications to Dualizing Modules and Gorenstein Modules. Pub. Math. I.H.E.S. no45, 193–215 (1975).Google Scholar
  14. FOSSUM, R and P. GRIFFITH: Complete local factorial rings which are not Cohen-Macaulay in characteristic p. Annales scient. Ec. Norm. Sup. (4) 8,189–200 (1975).MathSciNetzbMATHGoogle Scholar
  15. FAA DE BRUNO: Théorie des formes binaires: Turin 1876.Google Scholar
  16. GREEN, J.A.: The modular representation algebra of a finite group. Illinois J. Math. 6,607–619 (1962).MathSciNetzbMATHGoogle Scholar
  17. GROTHENDIECK, A. et J. DIEUDONNE. Elements de géométrie algébrique. I.H.E.S.[EGA].Google Scholar
  18. GUREVICH, G.B.: Foundations of the theory of algebraic invariants. Translated by J.R.M. Radok and A.J.M. Spencer: Groningen: P. Noordhoff 1969.Google Scholar
  19. HANNULA, T.A., T.G. RALLEY and I. REINER: Modular representation algebras. Bull. American Math. Soc. 73, 100–101 (1967).MathSciNetCrossRefzbMATHGoogle Scholar
  20. HEGMAN, D.G.: Indecomposable representations at characteristic p. Duke Math. J. 21, 377–381 (1954).MathSciNetCrossRefGoogle Scholar
  21. HOCHSTER, M. and Joel L. ROBERTS: Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay. Advances in Math. 13, 115–175 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  22. HILBERT, D.: Über die vollen Invariantsysteme. Ges. Abh. II2. 287–344: Springer 1970.Google Scholar
  23. JAMES, Gorden: A characteristic free approach to the representation theory of Sn. J. of Algebra (to appear).Google Scholar
  24. KLEIN, Felix: Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften. Grade. Leipzig: B.G. Teubner 18.Google Scholar
  25. KNUTSON, D.: λ-rings and the Representation Theory of the Symmetric Group. L.N.M. No.308. Berlin-Heidelberg-New York: Springer Verlag 1973.Google Scholar
  26. LASCOUX, Alain: Puissances extérieures déterminants et cycles de Schubert. Bull. Soc. Math. France 102, 161–179 (19).Google Scholar
  27. LASCOUX, Thèse de l'U.E.R. de Mathématiques de l'Université de Paris VII, 1977.Google Scholar
  28. LIPMAN, J.: Unique factorization in complete local rings. Proc. Symp. Pure Math. 29,531–546. (Algebraic Geometry, Arcata 1974. Providence: Amer. Math. Soc. 1975).Google Scholar
  29. LITTLEWOOD: The theory of group characters. Oxford 1952.Google Scholar
  30. MAC MAHON, P.A.: "Combinatory Analysis" Vol. 1,2. Cambridge Univ.Press 1915/1916.reprinted New York: Chelsea.Google Scholar
  31. MITCHELL, O.H.: Note on determinants of powers. Amer. J. Math. 4, 341–344 (1881).MathSciNetCrossRefzbMATHGoogle Scholar
  32. MOLIEN,T.: Uber die Invarianten der Linearen Substitutionsgruppen Setz.König.Preuss.Akad. Wiss, 1152–1156 (1897).Google Scholar
  33. MORI, S.: On affine cones associated with Polarized varieties. Japan J. Math. 1,301–309 (1975).MathSciNetzbMATHGoogle Scholar
  34. MUMFORD,D.: Geometric invariant theory. Erg. d. Math. Bd 34. Berlin-Heidelberg-New York: Springer 196.Google Scholar
  35. MURTHY, P.M.: A note on factorial rings. Arch.Math. 15, 418–420 1964).MathSciNetCrossRefzbMATHGoogle Scholar
  36. NAGATA, M.: On the 14th problem of Hilbert. Am.J.Math. 81, 766–772 (1959).MathSciNetCrossRefzbMATHGoogle Scholar
  37. NAGATA, M.: Invariants of a group in an affine ring. J. Math. Kyoto Univ. 3, 369–377 (1969).MathSciNetzbMATHGoogle Scholar
  38. NAGATA, M. and T. MIYOTA: Note on semi-reductive groups. J. Math. Kyoto Univ. 3, 379–382 (1964).MathSciNetzbMATHGoogle Scholar
  39. POPOVICIU. T.: Studie si cercetari stiitifice. Acad. R.P.R. Filiala Cluj 4, 8 (1953).Google Scholar
  40. RALLEY, T.: Decomposition of products of modular representation J. London Math. Soc. 44, 480–484 (1967).MathSciNetzbMATHGoogle Scholar
  41. RENAUD, J.C.: The Homorphisms of a modular representation algebras. Manuscript. University of Papua, New Guinea.Google Scholar
  42. RENAUD, J.C.: The decomposition of products in the modular representation ring of a cyclic group of prime power order.Manuscript.Google Scholar
  43. RENAUD, J.C.: The decomposition of products in the modular ring of a cyclic p-group. M.Sc.Thesis. University of Papua, New Guinea 1976.Google Scholar
  44. RIORDAN, John: Combinatorial Identities. New York: Wiley 1968.zbMATHGoogle Scholar
  45. ROBERTS, Paul: A minimal free complex associated to the minors of a matrix. Manuscript University of Utah (1977).Google Scholar
  46. ROBINSON, G. de B: Representation theory of the symmetric group. Toronto: Univ. of Toronto press. 1961.zbMATHGoogle Scholar
  47. SAMUEL, P.: Lectures on Unique Factorization Domains. Tata Institute, Bombay, 1964.zbMATHGoogle Scholar
  48. SCHUR, I.: Vorlesungen über Invariantentheorie. Grundl. der Mat. Wiss. Bd 143: Springer 1968.Google Scholar
  49. SERRE, J-P.: Sur la topologie des variétés algébriques en caractéristique p. International symposium on algebraic topology. Univ. Nacional Autonoma de Mexico and UNESCO.Google Scholar
  50. SERRE, J-P.: Cours d'arithmétique. Paris: Presses Universitaires de France. 1970.zbMATHGoogle Scholar
  51. SPRINGER, T.A.: Invariant theory. Lecture Notes in Mathematics. No. 585. Berlin-Heidelberg-New York: Springer 1977.zbMATHGoogle Scholar
  52. SRINIVASAN, B: The modular representation ring of a cyclic p-group. Proc. London Math. Soc. (3) 14, 677–688 (1964).MathSciNetCrossRefzbMATHGoogle Scholar
  53. STANLEY,R.: Theory and application of plane partitions. Studies in Applied Math. 50. Part 1, 167–188;Part 2, 259–279 (1971).Google Scholar
  54. STANLEY, R. (1974): Combinatorial Reciprocity Theorems. Advances in Math. 14, 194–253 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  55. STANLEY, R.: Cohen-Macaulay Rings and constructible polytopes. Bull. Amer. Math. Soc. 81, 133–135 (19).Google Scholar
  56. STANLEY, R: The upper bound conjecture and Cohen-Macaulay rings. Studies in Applied Math. 54, 135–142 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  57. STANLEY, R.: Cohen-Macaulay Complexes Higher Combinatories, ed. Martin Arger. Proc. NATO Advanced Study Institute. Dordrecht-Boston; D. Reidel 1977.Google Scholar
  58. STANLEY, R: Hilbert functions of graded algebras. Advances in Math.(to appear).Google Scholar
  59. SYLVESTER, J.J.: Collected Mathematical Papers: Chelsea 1973. 1) Proof of the hitherto undemonstrated fundamental theorem on invariants.Google Scholar
  60. Tables of the generating functions and ground forms of the binary quantics of the first ten orders.Google Scholar
  61. TITCHMARSH, E.C.: Introduction to the theory of Fourier integrals. Oxford: Oxford University Press 1937.zbMATHGoogle Scholar
  62. TOWBER,J: Two new functors from modules to algebras. Manuscript DePaul (1976).Google Scholar
  63. TOWBER,J: Young symmetry, the flag manifold and representations of GL(n). Manuscript DePaul University 1976.Google Scholar
  64. WEYL, H.:"The Classical groups". Princeton University Press 1946.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Gert Almkvist
    • 1
    • 2
  • Robert Fossum
    • 3
    • 4
  1. 1.Lund
  2. 2.HöörSweden
  3. 3.CopenhagenDenmark
  4. 4.Department of MathematicsUniversity of IllinoisUrbanaU.S.A.

Personalised recommendations