Advertisement

Another description of nest algebras

  • James A. Deddens
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 693)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Arveson, Interpolation problems in nest algebras, J. Functional Anal., 20 (1975), 208–233.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J. A. Deddens and T. K. Wong, The commutant of analytic Toeplitz operators, Trans. Amer. Math. Soc., 184 (1973), 261–273.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J. A. Erdos, Unitary invariants for nests, Pacific J. Math., 23 (1967), 229–256.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    P. R. Halmos, What does the spectral theorem say?, Amer. Math. Monthly, 70 (1963), 241–247.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    D. Larson, On certain reflexive operator algebras, Ph.D. thesis, University of California, Berkeley, 1976.Google Scholar
  6. [6]
    R. L. Loebl and P. S. Muhly, Analyticity and flows in von Neumann algebras, preprint.Google Scholar
  7. [7]
    W. E. Longstaff, Generators of nest algebras, Canad. J. Math., 26 (1974), 565–575.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, 1960.zbMATHGoogle Scholar
  9. [9]
    J. R. Ringrose, On some algebras of operators, Proc. London Math. Soc., 15 (1965), 61–83.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J. R. Schue, The structure of hyperreducible triangular algebras, Proc. Amer. Math. Soc., 15 (1964), 766–772.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    B. Sz.-Nagy, On uniformily bounded linear transformations in Hilbert space, Acta Sci. Math. (Szeged), 11 (1947), 152–157.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • James A. Deddens
    • 1
    • 2
  1. 1.University of KansasUSA
  2. 2.University of CincinnatiUSA

Personalised recommendations