Composition operators on hilbert spaces

  • Eric A. Nordgren
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 693)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AB]
    M. B. Abrahamse and J. A. Ball, Analytic Toeplitz operators with automorphic symbol II, to appear.Google Scholar
  2. [B]
    J. A. Ball, Hardy space expectation operators and reducing subspaces, Proc. Amer. Math. Soc. 47 (1975), 351–357. MR 50 #10887.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [Ba]
    J. R. Baxter, A class of ergodic transformations having simple spectrum, Proc. Amer. Math. Soc. 27 (1971), 275–279. MR 43 #2187.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [Be]
    J. M. Belley, Spectral properties for invertible measuring preserving transformations, Canad. J. Math. 25 (1973), 806–811.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [Bol]
    D. M. Boyd, Composition operators on the Bergman space and analytic function spaces on the annulus, Thesis, U. North Carolina, 1974.Google Scholar
  6. [Bo2]
    D. M. Boyd, Composition operators on the Bergman space, Coll. Math. 34 (1975), 127–136. MR 53 #11416.MathSciNetzbMATHGoogle Scholar
  7. [Bo3]
    D. M. Boyd, Composition operators on H p(A), Pacific J. Math. 62 (1976), 55–60.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Ca]
    J. G. Caughran, Polynomial approximation and spectral properties of composition operators on H 2, Indiana U. Math. J. 21 (1971), 81–84. MR 44 #4213.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [CS]
    J. G. Caughran and H. J. Schwartz, Spectra of compact composition operators, Proc. Amer. Math. Soc. 51 (1975), 127–130. MR 51 #13750.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Chl]
    J. R. Choksi, Nonergodic transformations with discrete spectrum, Illinois J. Math. 9 (1965), 307–320. MR 30 #4093.MathSciNetzbMATHGoogle Scholar
  11. [Ch2]
    J. R. Choksi, Unitary operators induced by measure preserving transformations, J. Math. Mech. 16 (1966), 83–100. MR 34 #1844.MathSciNetzbMATHGoogle Scholar
  12. [Ch3]
    J. R. Choksi, Unitary operators induced by measurable transformations, J. Math. Mech. 17 (1967/68), 785–801. MR 36 #2003.MathSciNetzbMATHGoogle Scholar
  13. [CTW]
    J. A. Cima, J. Thomson and W. Wogen, On some properties of composition operators, Indiana U. Math. J. 24 (1974), 215–220. MR 50 #2979.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [CW]
    J. A. Cima and W. Wogen, On algebras generated by composition operators, Canad. J. Math. 26 (1974), 1234–1241. MR 50 #2978.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [D]
    J. A. Deddens, Analytic Toeplitz and composition operators, Canad. J. Math. 24 (1972), 859–865. MR 46 #9789.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [Dn]
    M. A. Denjoy, Sur l'iteration des fonctions analytiques, C. R. Acad. Sci. Paris 182 (1926), 255–257.zbMATHGoogle Scholar
  17. [Du]
    P. L. Duren, Theory of Hp Spaces, Academic Press, New York, 1970. MR 42 #3552.zbMATHGoogle Scholar
  18. [F]
    L. Ford, Automorphic Functions, 2nd ed., Chelsea, N.Y. 1951.Google Scholar
  19. [Hl]
    P. R. Halmos, Measurable transformations, Bull. Amer. Math. Soc. 55 (1949), 1015–1034. MR 11-373.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [H2]
    P. R. Halmos, Measure Theory, Van Nostrand, Princeton, N.J., 1950. MR 11-504.CrossRefzbMATHGoogle Scholar
  21. [H3]
    P. R. Halmos, Lectures on Ergodic Theory, Chelsea, N.Y., 1956. MR 20 #3958.Google Scholar
  22. [H4]
    P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, N.J., 1967. MR 34 #8178.zbMATHGoogle Scholar
  23. [HN]
    P. R. Halmos and J. von Neumann, Operator methods in classical mechanics, Ann. Math. 43 (1942), 332–350. MR 4–14.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [Ha]
    F. Hartman, Inclusion theorems for Sonnenschein matrices, Proc. Amer. Math. Soc. 21 (1969), 513–519. MR 39 #5984.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [Iw]
    A. Iwanik, Pointwise induced operators on Lp-spaces, Proc. Amer. Math. Soc. 58 (1976), 173–178.MathSciNetzbMATHGoogle Scholar
  26. [Kml]
    H. Kamowitz, The spectra of endomorphisms of the disc algebra, Pacific J. Math. 46 (1973), 433–440. MR 49 #5918.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [Km2]
    H. Kamowitz, The spectra of composition operators on HP, J. Functional Anal. 18 (1975), 132–150. MR 53 #11417.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [KS]
    H. Kamowitz and S. Scheinberg, The spectrum of automorphisms of Banach algebras, J. Functional Anal. 4 (1969), 268–276. MR 40 #3316.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [KM]
    S. Karlin and J. McGregor, Spectral theory of branching processes, Z. Wahrscheinlichkeitstheorie 5 (1966), 6–33. MR 34 #5167.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [Kl]
    R. L. Kelley, Weighted shifts on Hilbert space, Thesis, U. Michigan, 1966.Google Scholar
  31. [Kn]
    M. Koenig, Recherches sur les integrals de certains equations fonctionelles, Annales de l'Ecole Normale 3 (1884), 1–112.Google Scholar
  32. [Kp]
    B. O. Koopman, Hamiltonian systems and transformations in Hilbert space, Proc. Nat. Acad. Sci. U.S.A. 17 (1931), 315–318.CrossRefzbMATHGoogle Scholar
  33. [KN]
    B. O. Koopman and J. von Neumann, Dynamical systems of continuous spectra, Proc. Nat. Acad. Sci. U.S.A. 18 (1932), 255–263.CrossRefzbMATHGoogle Scholar
  34. [Kr]
    K. Kuratowski, Topology, Vol. 1, Academic Press, N.Y., 1966. MR 36 #840.zbMATHGoogle Scholar
  35. [L]
    J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. 23 (1925), 481–519.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [Lu]
    A. Lubin, Isometries induced by composition operators and invariant subspaces, Illinois J. Math. 19 (1975), 424–427.MathSciNetzbMATHGoogle Scholar
  37. [Nl]
    J. von Neumann, Einige Satze über messbare Abbildungen, Ann. Math. (2) 33 (1932), 574–586.CrossRefzbMATHGoogle Scholar
  38. [N2]
    J. von Neumann, Zur operatoren methode in der klassischen Mechanik, Ann. Math. (2) 33(1932), 587–642, 789–791.CrossRefzbMATHGoogle Scholar
  39. [Nr]
    E. A. Nordgren, Composition operators, Canad. J. Math. 20 (1968), 442–449. MR 36 #6961.MathSciNetCrossRefzbMATHGoogle Scholar
  40. [R1]
    W. C. Ridge, Composition operators, Thesis, Indiana U., 1969.Google Scholar
  41. [R2]
    W. C. Ridge, Spectrum of a composition operator, Proc. Amer. Math. Soc. 37 (1973), 121–127. MR 46 #5583.MathSciNetCrossRefzbMATHGoogle Scholar
  42. [R3]
    W. C. Ridge, Characterization of abstract composition operators, Proc. Amer. Math. Soc. 45 (1974), 393–396. MR 49 #11310.MathSciNetCrossRefzbMATHGoogle Scholar
  43. [Rn1]
    R. C. Roan, Composition operators on the space of functions with H p derivative, to appear.Google Scholar
  44. [Rn2]
    R. C. Roan, Composition operators on a space of Lipschitz functions, to appear.Google Scholar
  45. [Rn3]
    R. C. Roan, Composition operators on H p with dense range, Indiana U. Math. J., to appear.Google Scholar
  46. [Rd1]
    W. Rudin, Analytic functions of class H p, Lectures on Functions of a Complex Variable (W. Kaplan ed.), U. Michigan Press,Ann Arbor, 1955. MR 17–24.Google Scholar
  47. [Rd2]
    W. Rudin, Analytic functions of class Hp, Trans. Amer. Math. Soc. 78 (1955), 46–66. MR 16–810.MathSciNetzbMATHGoogle Scholar
  48. [Rf]
    J. V. Ryff, Subordinate H p functions, Duke Math. J. 33 (1966), 347–354. MR 33 #289.MathSciNetCrossRefzbMATHGoogle Scholar
  49. [Sa]
    D. E. Sarason, Weak-star generators of H , Pacific J. Math. 17 (1966), 519–528. MR 35 #2151.MathSciNetCrossRefzbMATHGoogle Scholar
  50. [Sc]
    H. J. Schwartz, Composition operators on Hp, Thesis, U. Toledo, 1969.Google Scholar
  51. [ST]
    J. H. Shapiro and P. D. Taylor, Compact, nuclear, and Hilbert-Schmidt composition operators on H 2, Indiana U. Math. J. 23 (1973/74), 471–496. Mr 48 #4816.MathSciNetCrossRefzbMATHGoogle Scholar
  52. [Sh]
    A. L. Shields, Weighted shift operators and analytic function theory, Topics in Operator Theory, Mathematical Surveys, No. 13, Amer. Math. Soc., Providence, 1974. MR 50 #14341.zbMATHGoogle Scholar
  53. [SW]
    A. L. Shields and L. J. Wallen, The commutants of certain Hilbert space operators, Indiana U. Math. J. 20 (1971), 777–788. MR 44 #4558.MathSciNetCrossRefzbMATHGoogle Scholar
  54. [Skl]
    R. Sikorski, On the inducing of homomorphisms by mappings, Fund. Math. 36 (1949), 7–22. MR 11–166.MathSciNetzbMATHGoogle Scholar
  55. [Sk2]
    R. Sikorski, Boolean algebras, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, N.F., Band 25, Springer-Verlag, Berlin, 1964. MR 31 #2178.Google Scholar
  56. [Sn1]
    R. K. Singh, Composition operators, Thesis, U. New Hampshire, 1972.Google Scholar
  57. [Sn2]
    R. K. Singh, Compact and quasinormal composition operators, Proc. Amer. Math. Soc. 45 (1974), 80–82. MR 50 #1043.MathSciNetCrossRefzbMATHGoogle Scholar
  58. [Sn3]
    R. K. Singh, Normal and Hermitian composition operators, Proc. Amer. Math. Soc. 47 (1975), 348–350. MR 50 #8153.MathSciNetCrossRefzbMATHGoogle Scholar
  59. [Sn4]
    R. K. Singh, Invertible composition operators on L2(λ), Proc. Amer. Math. Soc. 56 (1976), 127–129. MR 53 #3776.MathSciNetGoogle Scholar
  60. [Sn5]
    R. K. Singh, Composition operators induced by rational functions, Proc. Amer. Math. Soc. 59 (1976), 329–333. MR 54 #5895.MathSciNetCrossRefzbMATHGoogle Scholar
  61. [Sw]
    D. W. Swanton, Composition operators on Hp(D), Thesis, Northwestern U., 1974.Google Scholar
  62. [sz]
    B. Sz.-Nagy, Über die Gesamtheit der charakteristischen Funktionen im Hilbertschen Funktionenraum, Acta Sci. Math. 9 (1937), 166–176.zbMATHGoogle Scholar
  63. [T1]
    G. Targonski, Seminar on functional operators and equations, Springer Lecture Notes #33, Springer-Verlag, Berlin, 1967. MR 36 #744.CrossRefzbMATHGoogle Scholar
  64. [T2]
    G. Targonski, Linear endomorphisms of function algebras and related functional equations, Indiana U. Math. J. 20 (1970), 579–589. MR 42 #5054.MathSciNetCrossRefzbMATHGoogle Scholar
  65. [W]
    J. Wolff, Sur l'iteration des fonctions, C. R. Acad. Sci. Paris 182 (1926), 42–43, 200–201.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Eric A. Nordgren
    • 1
  1. 1.University of New HampshireDurham

Personalised recommendations