A mixed finite element method for 2-nd order elliptic problems

Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 606)


Finite Element Method Complementary Energy Mixed Finite Element Method Order Elliptic Equation Regular Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Brezzi: On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. R.A.I.R.O., R 2 Août 1974, 129–151.MathSciNetzbMATHGoogle Scholar
  2. [2]
    F.Brezzi, P.A.Raviart: Mixed finite element methods for 4 th order problems. To appear.Google Scholar
  3. [3]
    P.G. Ciarlet, P.A. Raviart: General Lagrange and Hermite interpolation in R n with applications to finite element methods. Arch. Rat. Mech. Anal. 46 (1972), 177–199.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    P.G. Ciarlet, P.A. Raviart: A mixed finite element method for the biharmonic equation, Mathematical Aspects of Finite Elements in Partial Differential Equations. pp. 125–145. Academic Press, New-York, 1974.CrossRefGoogle Scholar
  5. [5]
    B.Fraeijs De Veubeke: Displacement and equilibrium models in the finite element method, Stress Analysis (O.C. Zienkiewicz and G.S.Holister, Editors), ch. 9, pp. 145–197. Wiley, 1965.Google Scholar
  6. [6]
    B.Fraeijs De Veubeke: Diffusive equilibrium models Lecture notes. University of Calgary, 1973.Google Scholar
  7. [7]
    B. Fraeijs De Veubeke, M.A. Hogge: Dual analysis for heat conductions problems by finite elements. Int. J. for Num. Methods in Eng., 5 (1972), 65–82.CrossRefzbMATHGoogle Scholar
  8. [8]
    J.Haslinger, I.Hlavacek: A mixed finite element method close to the equilibrium model, I.Dirichlet problem for one equation, II. Plane elasticity. To appear.Google Scholar
  9. [9]
    C. Johnson: On the convergence of a mixed finite element method for plate bending problems. Numer. Math., 21 (1973), 43–62.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    C.Johnson: Convergence of another mixed finite element method for plate bending problems. To appear.Google Scholar
  11. [11]
    T. Miyoshi: A finite element method for the solutions of fourth order partial differential equations. Kumamoto J., (Math.), 9, (1973), 87–116.MathSciNetzbMATHGoogle Scholar
  12. [12]
    J.T. Oden: Generalized conjugate functions for mixed finite element approximations of boundary-value problems, The Mathematical Foundations of the Finite Element Method (A.K. Aziz Editor), pp. 629–670, Academic Press, New-York, 1973.Google Scholar
  13. [13]
    J.T. Oden: Some contributions to the mathematical theory of mixed finite element approximations. Tokyo Seminar on Finite Elements, Tokyo, 1973.zbMATHGoogle Scholar
  14. [14]
    J.T.Oden, J.N.Reddy: On mixed element approximations, Texas Institute for Computational Mechanics. The University of Texas at Austin, 1974.Google Scholar
  15. [15]
    P.A.Raviart, J.M.Thomas: Primal hybrid finite element methods for 2 nd order elliptic equations. To appear.Google Scholar
  16. [16]
    J.N.Reddy: A Mathematical Theory of Complementary-Dual Variational Principles and Mixed Finite Element Approximations of Linear Boundary-Value Problems in Continuous Mechanics. Ph. D. Dissertation, The University of Alabama in Huntsville, 1973.Google Scholar
  17. [17]
    B.Scheurer: To appear.Google Scholar
  18. [18]
    J.M.Thomas: Methode des éléments finis hybrides duaux pour les problèmes elliptiques du 2 nd ordre. To appear in R.A.I.R.O., Série Analyse Numérique.Google Scholar
  19. [19]
    J.M.Thomas: Méthode des éléments finis équilibre pour les problèmes elliptiques du 2 nd ordre. To appear.Google Scholar
  20. [20]
    J.M.Thomas: Thesis. To appear.Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  1. 1.Centre de Mathématiques Appliquées, Ecole PolytechniqueFrance
  2. 2.Université de Paris VIFrance

Personalised recommendations