Advertisement

L-convergence of finite element approximations

  • Joachim Nitsche
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 606)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. [1]
    BREZIS, H., STAMPACCHIA, G.: Sur la régularité de la solution d’inéquations elliptiques. Bull. Soc. Math. France, 96, MR 39 No.659, 153–180 (1968).MathSciNetzbMATHGoogle Scholar
  2. [2]
    CIARLET, P.G., RAVIART, P.-A.: Interpolation Theory over Curved Elements, with Applications to Finite Element Methods. Comput. Methods in Appl. Mech. and Eng., 1, 217–249 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    CIARLET, P.G., RAVIART, P.-A.: Maximum Principle and Uniform Convergence for the Finite Element Method. Comput. Methods in Appl. Mech. and Eng., 2, 17–31 (1973).MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    FALK, R.S.: Error Estimates for the Approximation of a Class of Variational Inequalities. Math. of Comp., 28, 963–971 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    FALK, R.S.: Approximation of an Elliptic Boundary Value Problem with Unilateral Constraints. R.A.I.R.O. R2, 5–12 (1975).MathSciNetzbMATHGoogle Scholar
  6. [6]
    LIONS, J.L., STAMFACCHIA, G., Variational Inequalities. Comm. Pure Appl. Math., 20, 439–519 (1967).CrossRefGoogle Scholar
  7. [7]
    NATTERER, F.: Über die punktweise Konvergenz finiter Elemente (to appear).Google Scholar
  8. [8]
    NATTERER, F.: Optimale L-Konvergenz finiter Elemente bei Variationsungleichungen (to appear).Google Scholar
  9. [9]
    NITSCHE, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. d. Hamb. Math. Sem., 36, 9–15 (1971).MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    NITSCHE, J.: On Approximation Methods for Dirichlet-Problems Using Subspaces with ‘Nearly-Zero’ Boundary Conditions. Proc. of a Conference "The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations." A.K. Aziz editor Academic Press, 603–627 (1972).Google Scholar
  11. [11]
    NITSCHE, J.: L-Convergence of Finite Element Approximation. 2. Conf. on Finite Elements, Rennes, France (1975).Google Scholar
  12. [12]
    SCOTT. R.: Optimal L-Estimates for the Finite Element Method on Irregular Meshes (to appear).Google Scholar
  13. [13]
    STRANG, G.: Finite Elements and Variational Inequalities. Seminaires Analyse Numérique, Paris (1973/74).Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Joachim Nitsche
    • 1
  1. 1.Institut für Angewandte MathematikAlbert-Ludwigs-Universität78 FreiburgFederal Republic of Germany

Personalised recommendations