Application of a mixed finite element method to a nonlinear problem of elasticity

  • T. Miyoshi
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 606)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Berger, M.S.: On von Kármán’s equations and the buckling of a thin elastic plate I, The clamped plate. Comm. Pure and Appl. Math. 20,687–720(1967).MathSciNetCrossRefMATHGoogle Scholar
  2. [2].
    Knightly, G.H.: An existence theorem for the von Kármán equations. Arch. Rational Mech. Anal. 27,233–242(1967).MathSciNetCrossRefMATHGoogle Scholar
  3. [3].
    Kantrovich, L.V. and G.P.Akilov: Functional Analysis in Normed Spaces: Pergamon press 1964.Google Scholar
  4. [4].
    Miyoshi, T.: A finite element method for the solutions of fourth order partial differential equations. Kumamoto J. Sci. (Math.) 9,87–116(1972).MathSciNetMATHGoogle Scholar
  5. [5].
    Miyoshi, T.: A mixed finite element method for the solutions of the von Kármán equations. Numer Math. (to appear).Google Scholar
  6. [6].
    Miyoshi, T.: Lumped mass approximation to the nonlinear bending of elastic plates. (to appear)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • T. Miyoshi
    • 1
  1. 1.Department of MathematicsKumamoto UniversityKumamotoJapan

Personalised recommendations