Advertisement

Methodes d’Elements Finis en Viscoelasticite Periodique

  • G. Geymonat
  • M. Raous
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 606)

Keywords

Linear Viscoelastic Material Donne Lieu Maxwell Chain Viscoelastic Stress Analysis Nous Utiliserons 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    I. BABUŠKA, I. HLAVÁČEK-On the existence and uniqueness of solution in the theory of viscoelasticity. Archivium Mechaniki Stosowanej, 18, (1966), 47–84.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Z.P. BAŽANT, S.T. WU-Rate-type creep law for aging concrete based on Maxwell chain. Rilem Materiaux et Constructions, 7, (1974), 45–60.CrossRefGoogle Scholar
  3. [3]
    R. BOUC, G. GEYMONAT, M. JEAN, B. NAYROLES-Solution périodique du problème quasi-statique d’un solide viscoélastique à coefficients périodiques. Journal de Mécanique, 14, (1975), 609–637.MathSciNetzbMATHGoogle Scholar
  4. [4]
    R. BOUC, G. GEYMONAT, M. JEAN, B. NAYROLES-Cauchy and periodic unilateral problems for aging linear viscoelastic materials. A paraître dans: Journal Math. Anal. and Appl.Google Scholar
  5. [5]
    S. CAMPANANTO-Sui problemi al contorno per sistemi di equazioni differenziali lineari del tipo dell’elasticità. Ann. sc. Norm. Sup. Pisa, 13 (1959), 223–258 et 275–302.zbMATHGoogle Scholar
  6. [6]
    W.C. CARPENTER-Viscoelastic Stress Analysis. International Journal Num. Meth. Engng., 4, (1972), 357–366.CrossRefzbMATHGoogle Scholar
  7. [7]
    M. CROUZEIX-Sur l’approximation des équations différentielles opérationnelles linéaires par des méthodes de Runge-Kutta. Thèse, Paris, mars 1975.Google Scholar
  8. [8]
    G. DUVAUT, J.L. LIONS-Les inéquations en mécanique et en physique. Dunod, Paris, 1972.zbMATHGoogle Scholar
  9. [9]
    P. GERMAIN-Cours de mécanique des milieux continus. Masson, Paris, 1973.zbMATHGoogle Scholar
  10. [10]
    J.L. LIONS-Equations différentielles opérationnelles. Springer-Verlag, Berlin, 1961.CrossRefzbMATHGoogle Scholar
  11. [11]
    J.L. LIONS, E. MAGENES-Problèmes aux limites non homogènes. Dunod Paris, 1968.zbMATHGoogle Scholar
  12. [12]
    P.A. RAVIART-Méthode des Eléments Finis. Cours 3e Cycle, Paris VI 1971–72.Google Scholar
  13. [13]
    G. STRANG, J. FIX-An analysis of the finite element method. Prentice Hall, New York, 1973.zbMATHGoogle Scholar
  14. [14]
    O.C. ZIENKIEWICZ-The Finite Element Method in Engineering Science. McGraw-Hill, New York, 1971.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • G. Geymonat
    • 1
  • M. Raous
    • 2
  1. 1.Ist. Matematico, PolitecnicoTorino
  2. 2.C.N.R.S. - LMAMarseille

Personalised recommendations