Interior L estimates for finite element approximations of solutions of elliptic equations

  • Jean Descloux
  • Nabil Nassif
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 606)


Let ∧⊂⊂ Ω⊂ \(\widetilde\Omega\) where \(\widetilde\Omega\) is the domain of definition of the solution of an elliptic equation. One assumes certain conditions of regularity on the equation and on the finite elements on Ω. Then one shows that the L2 (Ω) convergence of the approximate solution towards the exact solution implies the L (∧) convergence with the same order.


Elliptic Equation Dirichlet Form Regular Element Finite Element Approximation Interior Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. BRAMBLE, J. NITSCHE, A. SCHATZ: "Maximum-norm interior estimates for Ritz-Galerkin methods". Mathematics of Computation, vol.29,n. 131, 1975, 677–689.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    PH. CLEMENT: "Approximation by finite element functions in Sobolev norms". To appear in Revue Française d’automatisme, informatique et recherche opérationnelle.Google Scholar
  3. [3]
    J. DESCLOUX: "Interior regularity and local convergence of Galerkin finite element approximations for elliptic equations". Topics in numerical analysis II (J. Miller, ed.), Academic Press 1975.Google Scholar
  4. [4]
    J. DESCLOUX: "Some properties of approximations by finite elements". Report EPFL, Dept. Math. Lausanne 1969.Google Scholar
  5. [5]
    J. DESCLOUX: "Two basic properties of finite elements". Report EPFL, Dept. Math. Lausanne 1973.Google Scholar
  6. [6]
    G. FICHERA: "Linear elliptic differential systems and eigenvalue problems". Lecture Notes in Mathematics 8, 1965, Springer-Verlag.Google Scholar
  7. [7]
    J. NITSHE: "L-convergence of finite element approximation". 2. Conference on finite elements, Rennes 1975.Google Scholar
  8. [8]
    J. NITSCHE, A. SCHATZ: "Interior estimates for Ritz-Galerkin methods. Mathematics of Computation, vol. 28, N. 128, 1974, 937–959.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    V.S. RAYABEN’KII: "Local splines. Computer Methods in Applied Mechanics and Engineering".5 (1975), 211–225.MathSciNetCrossRefGoogle Scholar
  10. [10]
    R. SCOTT: "Optimal L estimates for the finite element method on irregular meshes". Report, University of Chicago 1975.Google Scholar
  11. [11]
    G. STRANG: "Approximation in the finite element method". Num. Math. 19, 1972, 81–98.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    V. THOMEE, B. WESTERGREN: "Elliptic difference equations and interior regularity". Num. Math. 11, 1968, 196–210.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Jean Descloux
    • 1
  • Nabil Nassif
    • 2
  1. 1.EPFL Dept. Math. of LausanneSwitzerland
  2. 2.American University of BeirutLebanon

Personalised recommendations