Advertisement

Estimations d’Erreur dans L pour les Inequations a Obstacle

  • C. Baiocchi
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 606)

Abstract

Soit Wh (resp. uh) la solution approchée obtenue en discrétisant par éléments finis du premier ordre une équation (resp. une inéquation) variationnelle dont la solution est u. On compare les quantités ‖u−uhL et ‖u−whL (cf. (4.2) suivante); on en déduit une estimation "presque optimale" pour ‖u−uhL (cf. (4.3) suivante).

Keywords

Finite Element Method Variational Inequality Finite Element Approximation Complementarity System Hermite Interpola 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    C. BAIOCCHI, E. MAGENES: "Problemi di frontiera libera in idraulica". Accad. Naz. Lincei, Quad. 217, Roma (1975) 394–421.Google Scholar
  2. [2]
    C. BAIOCCHI, G.A. POZZI: Travail en préparation.Google Scholar
  3. [3]
    H. BREZIS, G. STAMPACCHIA: "Sur la régilarité de la solution d’inéquations elliptiques". Bull. Soc. Math. France 96 (1968) 153–180.MathSciNetzbMATHGoogle Scholar
  4. [4]
    F. BREZZI, G. SACCHI: "A Finite Element Approximation of a Variational Inequality Related to Hydraulics". A paraître sur Calcolo.Google Scholar
  5. [5]
    P.G. CIARLET, P.A. RAVIART: "General Lagrange and Hermite interpolation in ℝn, with applications to finite element methods". Arch. Rat. Mech. Anal. 46 (1972) 177–199.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    P.G. CIARLET, P.A. RAVIART: "Maximum principle and uniform convergence for the finite element method". Comp. Mat. Appl. Mech. Eng. 2 (1971) 17–31.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    R.S. FALK: "Error estimates for the approximation of a class of variational inequalities". Math. of Comp. 28 (1974) 963–971.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    H. LEWY, G. STAMPACCHIA: "On the regularity of the solution of a variational inequality". Comm. P.A.M. 22 (1969) 153–188.MathSciNetzbMATHGoogle Scholar
  9. [9]
    J.C. MIELLOUX: "Méthodes de Jacobi, Gauss-Seidel, sur (sous)-relaxation par blocs, appliquées à une classe de problèmes non linéaires". C.R.A.S. Paris, 273 (1971) 1257–1260.zbMATHGoogle Scholar
  10. [10]
    U. MOSCO: Conférence de ce Symposium.Google Scholar
  11. [11]
    U. MOSCO, F. SCARPINI: "Complementarity systems and approximation of variational inequalities" R.A.I.R.O., 9 (1975) 83–104.MathSciNetzbMATHGoogle Scholar
  12. [12]
    U. MOSCO, G. STRANG: "One side approximation and variational inequalities". Bull. Amer. Math. Soc. 80 (1974) 308–312.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    U. MOSCO, G.M. TROIANIELLO: "On the smoothness of solution of the unilateral Dirichlet problem". Boll. U.M.I. 8 (1973) 56–67.MathSciNetzbMATHGoogle Scholar
  14. [14]
    J. NITSCHE: "L convergence of finite element approximation". 2ème conférence sur les éléments finis, Rennes (France) (1975).Google Scholar
  15. [15]
    J. NITSCHE: Conférence de ce Symposium.Google Scholar
  16. [16]
    R. SCOTT: "Optimal L estimates for the finite element method on irregular meshes". A paraître.Google Scholar
  17. [17]
    G. STAMPACCHIA: "Formes bilinéaires coercitives sur les ensembles convexes". C.R.A.S. Paris, 258 (1964) 4413–4416.MathSciNetzbMATHGoogle Scholar
  18. [18]
    G. STRANG, G. FIX: "An analysis of the finite element method". Prentice-Hall, Englewood Cliffs, N.J. (1973).zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • C. Baiocchi
    • 1
  1. 1.Istituto di Matematica dell’Università et L.A.N. del C.N.R.PaviaItalie

Personalised recommendations