Advertisement

De rham theory for bΓ

  • Herbert Shulman
  • James Stasheff
I. Gelfand-Fuks Theory And Characteristic Classes Of Foliations
Part of the Lecture Notes in Mathematics book series (LNM, volume 652)

Keywords

Spectral Sequence Characteristic Classis Springer Lecture Note Differential Algebra Double Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    I.N. Bernstein and B.I. Rozenfeld, On characteristic classes of foliations, Funk. Anal. i Pril 6 (1972), 68–69.zbMATHMathSciNetGoogle Scholar
  2. [2]
    A. Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963), 111–122.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    R. Bott, On the Chern-Weil homomorphism and the continuous cohomology of Lie groups, Advances in Math. 11 (1973), 289–303.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    R. Bott and A. Haefliger, On characteristic classes of Γ-foliations, Bull. A.M.S. 78 (1972), 1039–1044.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    R. Bott, H. Shulman and J. Stasheff, On the de Rham theory of classifying spaces, to appear in Advances in Math.Google Scholar
  6. [6]
    H. Cartan, Notions d'algèbre différentielle, etc..., Colloque de Topologie, Bruxelles (1950), 15–27 and 57–71.Google Scholar
  7. [7]
    W. Greub, S. Halperin and R. Van Stone, Connections, Curvature and Cohomology, Vol. III, Acad. Press 1976.Google Scholar
  8. [8]
    A. Haefliger, Sur les classes caractéristiques des feuilletages, Sém. Bourbaki 1971/72, # 412, Springer Lecture Notes in Math., 317 (1973).Google Scholar
  9. [9]
    J. Heitsch, Deformations of secondary characteristic classes, Topology 12 (1973), 381–388.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10a]
    F. Kamber and P. Tondeur, Characteristic invariants of foliated bundles, Manuscripta Mathematica 11 (1974), 51–89.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [10b]
    F. Kamber and P. Tondeur, Semi-simplicial Weil algebras and characteristic classes for foliated bundles in Cech cohomology, Proc. Symposia Pure Math., Vol. 27, 283–294.Google Scholar
  12. [10c]
    F. Kamber and P. Tondeur, Foliated Bundles and Characteristic Classes, Springer Lecture Notes in Math., no 493 (1975).Google Scholar
  13. [11]
    S. Morita, A remark on the continuous variation of secondary characteristic classes for foliations, I.A.S. preprint.Google Scholar
  14. [12]
    W. Thurston, Variations of the Godbillon-Vey invariant in higher codimensions, to appear.Google Scholar
  15. [13]
    Van Est, Une application d'une méthode de Cartan-Leray, Indag. Math. 17 (1955), 542–4.Google Scholar
  16. [14]
    C. Godbillon, Cohomologies d'algèbres de Lie de champs de vecteurs formels, Séminaire Bourbaki 1972/73, exposé 421, Springer Lecture Notes in Math., no 383 (1974).Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Herbert Shulman
  • James Stasheff

There are no affiliations available

Personalised recommendations