Advertisement

Module Theory pp 143-150 | Cite as

Rings of bounded module type

  • Roger Wiegand
Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 700)

Keywords

Prime Ideal Direct Summand Commutative Ring Valuation Ring Matrix Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. S. Shores and R. Wiegand, "Rings whose finitely generated modules are direct sums of cyclics", J. Algebra 32 (1974), 152–172.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    R. G. Swan, "The number of generators of a module", Math. Z. 102 (1967), 318–322.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    R. B. Warfield, Jr., "Decomposability of finitely presented modules", Proc. Amer. Math. Soc. 25 (1970), 167–172.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    R. Wiegand, "Dimension functions on the prime spectrum", Comm. in Algebra 3 (1975), 459–480.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    R. Wiegand and S. Wiegand, "Commutative rings whose finitely generated modules are direct sums of cyclics", Lecture Notes in Mathematics 616, Springer (1977), 406–423.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    S. Wiegand, "Locally maximal Bezout domains", Proc. Amer. Math. Soc. 47 (1975), 10–14.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Roger Wiegand
    • 1
  1. 1.University of NebraskaLincoln

Personalised recommendations