Elementary cosmoi I

  • Ross Street
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 420)


Full Subcategory Extension System Left Adjoint Enrich Category Terminal Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Benabou, Catégories avec multiplication. C.R. Acad. Sc. Paris 256 (1963) 1887–1890.MathSciNetzbMATHGoogle Scholar
  2. [2]
    J. Benabou, Introduction to bicategories. Lecture Notes in Mathematics 47 (1967) 1–77.MathSciNetCrossRefGoogle Scholar
  3. [3]
    J. Benabou and J. Roubaud, Monades et descente. C.R. Acad. Sc. Paris 270 (1970) 96–98.MathSciNetzbMATHGoogle Scholar
  4. [4]
    C. Chevalley, Séminaire sur la descente 1964–65 (unpublished)Google Scholar
  5. [5]
    B.J. Day and G.M. Kelly, Enriched functor categories. Lecture Notes in Math. 106 (1969) 178–191.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    E.J. Dubuc, Kan extensions in enriched category theory. Lecture Notes in Math. 145 (1970) 1–173.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    S. Eilenberg and G.M. Kelly, Closed categories. Proc. Conference on Categorical Algebra at La Jolla (Springer, 1966) 421–562.Google Scholar
  8. [8]
    P. Freyd, Abelian categories. (Harper and Row, 1964)Google Scholar
  9. [9]
    P. Freyd, Several new concepts. Lecture Notes in Math. 99 (1969) 196–241.MathSciNetCrossRefGoogle Scholar
  10. [10]
    J.W. Gray, Report on the meeting of the Midwest Category Seminar in Zurich. Lecture Notes in Math. 195 (1971) 248–255.CrossRefGoogle Scholar
  11. [11]
    J.W. Gray, Formal category theory. Springer Lecture Notes in Math. (to appear)Google Scholar
  12. [12]
    G.M. Kelly and R.H. Street, Review of the elements of 2-categories. (this volume)Google Scholar
  13. [13]
    J. Lambek, Subequalizers. Canad. Math. Bull. 13 (1970) 337–349.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    F.W. Lawvere, The category of categories as a foundation for mathematics. Proc. Conference on Categorical Algebra at La Jolla (Springer, 1966) 1–20.Google Scholar
  15. [15]
    F.W. Lawvere, Ordinal sums and equational doctrines. Lecture Notes in Math. 80 (1969) 141–155.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    F.W. Lawvere, Equality in hyperdoctrines and comprehension schema as an adjoint functor. Proc. of Symposia in Pure Math. 17 (A.M.S. 1970) 1–14.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    F.W. Lawvere, Introduction. Lecture Notes in Mathematics 274 (1972) 1–12.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    F.W. Lawvere, Metric spaces, generalized logic, and closed categories. (Preprint from Istituto di Matematica, Università di Perugia, 1973)Google Scholar
  19. [19]
    F.E.J. Linton, The multilinear Yoneda lemmas. Lecture Notes in Math. 195 (1971) 209–229.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    S. Mac Lane, Categories for the working mathematician. Graduate texts in Math. 5 (Springer 1971).Google Scholar
  21. [21]
    R.H. Street, The formal theory of monads. Journal of Pure and Applied Algebra 2 (1972) 149–168.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    R.H. Street, Fibrations and Yoneda's lemma in a 2-category. (this volume)Google Scholar

Copyright information

© Springer-Verleg 1974

Authors and Affiliations

  • Ross Street

There are no affiliations available

Personalised recommendations