Advertisement

On adjoint-functor factorisation

  • Brian Day
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 420)

Keywords

Natural Transformation Full Subcategory Left Adjoint Adjoint Pair Full Embedding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Antoine, P., Extension minimale de la catégorie des espaces topologiques, C.R. Acad. Sc. Paris, t. 262 (1966), 1389–1392.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Applegate, H. and Tierney, M., Categories with models, Seminar on Triples and Categorical Homology Theory, Lecture Notes 80 (Springer 1969), 156–244.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Applegate, H. and Tierney, M., Iterated cotriples, Reports of the Midwest Category Seminar IV, Lecture Notes 137 (Springer 1970), 56–99.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Bénabou, J., Introduction to bicategories, Reports of the Midwest Category Seminar I, Lecture Notes 47 (Springer 1967), 1–77.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Day, B.J. and Kelly, G.M., Enriched functor categories, Reports of the Midwest Category Seminar III, Lecture Notes 106 (Springer 1969), 178–191.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Day, B.J., On closed categories of functors, Reports of the Midwest category Seminar IV, Lecture Notes 137 (Springer 1970), 1–38.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Day, B.J., A reflection theorem for closed categories, J. Pure and Applied Algebra, Vol. 2, No. 1 (1972), 1–11.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Day, B.J., Note on monoidal localisation, Bull. Austral. Math. Soc., Vol. 8 (1973), 1–16.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Dubuc, E.J., Kan extensions in enriched category theory, Lecture Notes 145 (Springer 1970).Google Scholar
  10. [10]
    Eilenberg, S. and Kelly G.M., Closed categories, in Proc. Conf. on Categorical Algebra, La Jolla, 1965 (Springer 1966), 421–562.Google Scholar
  11. [11]
    Fakir, S., Monade idempotente associée à une monade, C.R. Acad. Sc. Paris, t. 270 (1970), 99–101.MathSciNetzbMATHGoogle Scholar
  12. [12]
    Fischer, H.R., Limesräume, Math. Annalen, Bd. 137 (1959) 269–303.CrossRefzbMATHGoogle Scholar
  13. [13]
    Freyd, P. and Kelly, G.M., Categories of continuous functors I, J. Pure and Applied Algebra, Vol. 2, No. 3 (1972), 169–191.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Gabriel, P. and Zisman, M., Calculus of fractions and homotopy theory, Springer-Verlag, Berlin, 1967.CrossRefzbMATHGoogle Scholar
  15. [15]
    Kelly, G.M., Monomorphisms, epimorphisms, and pullbacks, J. Austral. Math. Soc., Vol. 9 (1969), 124–142.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Kelly, G.M., Adjunction for enriched categories, Reports of the Midwest Category Seminar III, Lecture Notes 106 (Springer 1969), 166–177.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Kock, A., Monads for which structures are adjoint to units (to appear).Google Scholar
  18. [18]
    Maclane, S., Categories for the working mathematician, Springer-Verlag, New York, Heidelberg, Berlin, 1971.zbMATHGoogle Scholar
  19. [19]
    Wolff, H., V-localisations and V-monads, J. Algebra, Vol. 24, 1973, 405–438.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verleg 1974

Authors and Affiliations

  • Brian Day

There are no affiliations available

Personalised recommendations