Asymptotic 0–1 laws in combinatorics

  • W. Oberschelp
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 969)


The paper considers a special chapter of the theory of asymptotic methods in enumeration. While the general theory has been covered by an excellent exposition of Bender [1], we mainly consider relative frequencies for relational systems of a special kind within a general class of configurations. We give a survey of results and try to emphasize the intuitive ideas behind the formal results.


Partial Order Binary Relation Random Graph Edge Function Basic Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.A. Bender, Asymptotic methods in enumeration. SIAM review 16 (1974), 485–515.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    A. Blass and F. Harary, Properties of almost all graphs and complexes. Jour.graph theory 3 (1979), 225–240.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    B. Bollobás, Graph theory. Springer, New York, Heidelberg, Berlin (1979).CrossRefzbMATHGoogle Scholar
  4. 4.
    B. Bollobás and P. Erdös, Cliques in random graphs. Math.proc.Cambridge phil.soc. 80 (1976), 419–427.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    K.J.Compton, Application of logic to finite combinatorics. Dissertation Wesleyan Univ., Middletown (1981) (unpublished manuscript).Google Scholar
  6. 6.
    P. Erdös and A. Rényi, On the evolution of random graphs. Publ.math. inst. Hungar. acad. sciences 5 (1960), 17–61.MathSciNetzbMATHGoogle Scholar
  7. 7.
    P. Erdös and J. Spencer, Probabilistic methods in combinatorics. Academic Press New York, London (1974).zbMATHGoogle Scholar
  8. 8.
    G. Exoo, On a adjacencyproperty of graphs. Jour. graph theory 5 (1981), 371–378.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    R. Fagin, Probabilities on finite models. Jour. Symb. Logic 41 (1976), 50–58.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    F. Harary and E.M. Palmer, Graphical enumeration. Academic Press New York, London (1973).zbMATHGoogle Scholar
  11. 11.
    D.J. Kleitman and B.L. Rothschild, Asymptotic enumeration of partial orders on a finite set. Trans. AMS 205 (1975), 205–220.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    A.D. Korshunov, Solution to a problem of Erdös and Rényi on Hamilton cycles in nonoriented graphs. Soviet Math. Doklady 17 (1976), 760–764.Google Scholar
  13. 13.
    J.F. Lynch, Almost sure theories. Ann.math.logic 18 (1980), 91–135.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    J.W. Moon, Almost all graphs have a spanning cycle. Canad.math.bull. 15 (1972), 39–41.CrossRefzbMATHGoogle Scholar
  15. 15.
    L. Moser and M. Wyman, An asymptotic formula for the Bell numbers. Trans. roy. Canad. soc. 49, ser. III (1955), 49–54.MathSciNetzbMATHGoogle Scholar
  16. 16.
    W. Oberschelp Kombinatorische Anzahlbestimmungen in Relationen. Math. Annalen 174 (1967), 53–78.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    W. Oberschelp, Monotonicity for structure numbers in theories without identity. In: Lecture notes in math. 579 (1977), 297–308.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    W. Oberschelp, Asymptotische 0–1 Anzahlformeln für prädikatenlogisch definierte Modellklassen. Manuscript unpublished. Abstract in: Deutsche Math.Vereinigung, Vorträge Univ. Dortmund 1980, p.162.Google Scholar
  19. 19.
    E.M. Wright, Graphs on unlabelled nodes with a given number of edges. Acta Math. 168 (1971), 1–9.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • W. Oberschelp
    • 1
  1. 1.RWTH AachenAachenFederal Republic of Germany

Personalised recommendations