Arcs and ovals in steiner triple systems

  • Hanfried Lenz
  • Herbert Zeitler
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 969)


Several constructions of Steiner triple systems (STS) with ovals are given. For every v ≡ 3 or 7 mod 12 there are STS's with hyperovals, for every v ≡ 1 or 3 mod 6 there are STS's with ovals, and for infinitely many v ≡ 1 or 3 mod 6 there are STS's without ovals. The ovals may be classified by their complementary sets, the so-called counterovals. Several questions remain open.


Automorphism Group Incidence Matrix Steiner Triple System Balance Incomplete Block Design Steiner System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.C. Bose On the construction of balanced incomplete block designs. Ann. Engenics 9 (1939), 353–399.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J. Dénes A.D. Keedwell Latin squares and their applications. Academic Press, New York 1976.zbMATHGoogle Scholar
  3. 3.
    J. Doyen Sur la structure de certains systèmes triples de Steiner. Math. Z. 111 (1969), 289–300.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    J. Doyen R.M. Wilson Embedding of Steiner triple systems. Discrete Math. 5 (1973), 229–239.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    M. Hall Combinatorial Theory. 2nd ed., Blaisdell, Waltham, Mass. 1975.Google Scholar
  6. 6.
    H. Hanani Balanced incomplete block designs and related designs. Discrete Math. 11 (1975), 255–369.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    J.W.P. Hirschfeld Projective Geometries over Finite Fields. Oxford University Press 1979.Google Scholar
  8. 8.
    D.E. Knuth A permanent inequality. Amer. Math. Monthly 1981, 731–740.Google Scholar
  9. 9.
    C.C. Lindner A. Rosa (eds.) Topics on Steiner systems. Annals Discrete Math. 7 (1980), 317–349.Google Scholar
  10. 10.
    C.C. Lindner E. Mendelsohn A. Rosa On the number of 1-factorizations of the complete graph. J. Comb. Th. (B) 20 (1976), 265–282.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    R. Peltesohn Eine Lösung der beiden Heffterschen Differenzen-probleme. Composito Math. 6 (1939), 251–167.MathSciNetzbMATHGoogle Scholar
  12. 12.
    W. Piotrowski Oral communication.Google Scholar
  13. 13.
    S. Segre Lectures on modern geometry. Cremonese 1960.Google Scholar
  14. 14.
    G. Stern H. Lenz Steiner systems with given subspaces; another proof of the Doyen-Wilson-theorem. Boll. Un. Mat. Ital. (5) 17-A (1980), 109–114.MathSciNetzbMATHGoogle Scholar
  15. 15.
    R.M. Wilson Nonisomorphic Steiner triple systems. Math. Z. 135 (1974), 303–313.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    H. Zeitler Ovals in STS(13). Math. Semesterber., to appearGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Hanfried Lenz
    • 1
  • Herbert Zeitler
    • 2
  1. 1.Freie UniversitätBerlin 33
  2. 2.Universität BayreuthBayreuthGermany

Personalised recommendations