Orbits and enumeration

  • Peter J. Cameron
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 969)


Automorphism Group Permutation Group Polynomial Ring Wreath Product Primitive Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Barwise,(ed.) Handbook of Mathematical Logic, North-Holland, Amsterdam-New York-Oxford, (1977).Google Scholar
  2. 2.
    P.J. Cameron, Orbits of permutation groups on unordered sets, I, J.London Math.Soc. (2) 17 (1978), 410–414; II, ibid. (2) 23 (1981) 249–265; III, IV, ibid., to appear.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    P.J.Cameron, Colour schemes, Annals Discr.Math., in press.Google Scholar
  4. 4.
    P.J.Cameron, Orbits, enumeration and colouring, Proc. 9th Australian Conf.Combinatorial Mathematics, (ed.A.P.Street), Lecture Notes in Math., Springer-Verlag, in press.Google Scholar
  5. 5.
    P.J.Cameron and J.Saxl, Permuting unordered subsets, Quart. J. Math. Oxford, to appear.Google Scholar
  6. 6.
    P. Erdös and J. Spencer, Probabilistic Methods in Combinatorics, Academic Press, New York, (1974).zbMATHGoogle Scholar
  7. 7.
    A.M.W. Glass, Ordered Permutation Groups, London Math.Soc.Lecture Notes 55, Cambridge Univ.Press, Cambridge, (1981).zbMATHGoogle Scholar
  8. 8.
    F. Harary and E.M. Palmer, Graphical Enumeration, Academic Press, New York-London (1973).zbMATHGoogle Scholar
  9. 9.
    H.D.Macpherson, The action of an infinite permutation group on the unordered subsets of a set, J.London Math.Soc., to appear.Google Scholar
  10. 10.
    M.Pouzet, Caractérisation topologique et combinatoire des âges les plus simples, preprint.Google Scholar
  11. 11.
    N.J.A. Sloane, Handbook of Integer Sequences, Academic Press, New York-San Francisco-London (1973).zbMATHGoogle Scholar
  12. 12.
    R.E. Woodrow, There are four countable ultrahomogeneous graphs without triangles, J.Combinatorial Theory (B), 27 (1979), 168–179.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Peter J. Cameron
    • 1
  1. 1.Merton CollegeOxfordU.K.

Personalised recommendations