Advertisement

Vitesse De Convergence Pour Certains Problemes Statistiques

Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 678)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [0]
    L. LE CAM-Notes on asymptotic methods in statistical decision theory Centre de Recherches Mathématiques-Université de Montréal.Google Scholar
  2. [1]
    JOLIVET E.-Sur la mesure d'aggrégation-Journées "Statistiques dans les processus aléatoires"(Grenoble 1977)-A paraître-Lecture notes, Springer-Verlag (mars 1978)Google Scholar
  3. [2]
    REBOLLEDO R.-Sur les applications de la théorie des martingales à l'étude statistique d'une famille de processus ponctuels-Journées "Statistique dans les processus aléatoires" (Grenoble 1977)-A paraître-Lecture notes, Springer-Verlag (mars 1978).Google Scholar

Bibliographie

  1. [1]
    BAHADUR (1958)-Examples of inconsistancy of maximum likelihood estimates-Sankhy, vol. 20, part. 3 et 40, p. 207–210MathSciNetzbMATHGoogle Scholar
  2. [2]
    CROWDER M. (1976)-Maximum likelihood estimation for dependent observations. Journ. of Roy. Soc. Série B, no 1, p. 45–53Google Scholar
  3. [3]
    DZAPARIDZE (1974)-On simplified estimators of unknown parameters with good asymptotic properties Theory of Prob. and Appl., vol. XIX, no 2, p. 347–358MathSciNetGoogle Scholar
  4. [4]
    GUYON X., PRUM B.-Estimation et tests pour des champs gaussiens indexés par ℤp (preprint, Orsay)Google Scholar
  5. [5]
    HUBER-The behavior of maximum likelihood estimates under non standard conditions. Proceed. of the 5th Berkely symposium on Proba. and Stat. Univ. of Calif. Pass., 1967, vol. 1, p. 221–233Google Scholar
  6. [6]
    KIEFER, WOLFOWITZ-Consistency of the maximum likelihood estimator on the presence of infinitely many incidental parameters Ann. Math. Stat., vol. 27 (1956), p. 884–906MathSciNetzbMATHGoogle Scholar
  7. [7]
    KRAFT, LE CAM (1956)-A remark on the roots of the maximum likelihood equations. Ann. Math. Stat., voL. 27, p. 1174–1178CrossRefzbMATHGoogle Scholar
  8. [8]
    LE CAM (1970)-On the assumptions used to prove asymptotic normality of maximum likelihood estimates. Annals of Math. Stat. vol. 41, no 3, p. 802–828MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    LE CAM, SCHWARZ (1960)-A necessary and sufficient condition for the existence of consistent estimates Ann. Math. Stat. vol. 31, p. 140–150MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    PERLMAN-On the strong consistency of approximate maximum likelihood estimates. Proceedings of the 6th Berkeley Symp. on Proba. and Stat. Univer. of Calif. Pass. 1970, p. 263–271Google Scholar
  11. [11]
    Séminaire de Statistique d'Orsay-Paris VII (1974–1975 Astérisque 43–44 (1977).Google Scholar
  12. [12]
    WEISS, WOLFOWITZ-Estimators of maximum of probability-Lecture Notes, Springer-Verlag, no 424 (1974).Google Scholar
  13. [13]
    WALD A.-A note on consistency of the maximum likelihood estimator A.M.S. 1949, p. 595–600Google Scholar
  14. [14]
    LE CAM L.-On some asymptotics properties of maximum likelihood estimates-Univ California Pub. Stat. vol. 1 (1953), p. 277–328Google Scholar
  15. [15]
    CHEVALIER J.-Thèse Paris, 1975.Google Scholar

Bibliographie

  1. [1]
    BOX et JENKINS-Time Series Analysis, forecasting and control.Google Scholar
  2. [2]
    GRENANDER, ROSENBLATT-Statistical spectral analysis of time series arising from stationary stochastic processes. A.M.S., Vol. 24 (1953) p. 537–558.MathSciNetzbMATHGoogle Scholar
  3. [3]
    GUYON, PRUM-Notes C.R. Ac. Sc. Paris, t. 284 (1977), série A, p. 327MathSciNetGoogle Scholar
  4. [4]
    GUYON, PRUM-Estimation et tests pour des champs gaussiens indexés par ℤp (preprint Orsay)Google Scholar
  5. [5]
    IBRAGIMOV, ROZANOV-Processus gaussiens-Editions de MoscouGoogle Scholar
  6. [6]
    PHAN DINH-Thèse Grenoble (1974)Google Scholar
  7. [7]
    WALKER-Asymptotic properties of least square estimates-AMS 35, p. 363–384Google Scholar
  8. [8]
    WHITTLE-The analysis of multiple time series-IRSS B 15, p. 125–139Google Scholar
  9. [9]
    PISSARENKO-On the computation of the likelihood ratio for gaussian processes with a rational spectrum. Theor. of Prob. and its Applic., vol.X no 2, 1965-p. 299CrossRefGoogle Scholar
  10. [10]
    GRENANDER, SZEGO-Tœplitz form and their applications-University of California Press, (1958).Google Scholar
  11. [11]
    LE CAM L.-Notes on asymptotic methods in statistical decision theory-Centre de Recherches Mathématiques-Université de Montréal (1974).Google Scholar

Bibliographie

  1. [1]
    LE CAM (1975): On local and global properties in the theory of asymptotic normality of experiments. Stochastic process and related topics-Vol. 1 (Academic Press).Google Scholar
  2. [2]
    LE CAM (1973): Convergence of estimates under dimensionnality restrictions. Annals of Stat. Vol. 1, no 1, p. 38–53CrossRefzbMATHGoogle Scholar
  3. [3]
    BRETAGNOLLE-HUBER: Estimation des densités-Risque Minimax (à paraître)Google Scholar
  4. [4]
    CHERNOFF (1963): A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations Annals Maths Stat., vol. 58, p. 493–507MathSciNetzbMATHGoogle Scholar
  5. [5]
    IBRAGIMOV, ROZANOV: Processus aléatoires gaussiens, Ed. de Moscou.Google Scholar
  6. [6]
    KRASNOSEL'SKII, RUTICKII: Convex functions and orlicz spaces (Noordhoff Ltd).Google Scholar
  7. [7]
    GRENANDER, ROSENBLATT-Statistical analysis of time series (Wiley).Google Scholar
  8. [8]
    PISSARENKO(1965): The computation of the likelihood ratio for gaussian processes with a rationnal spectra. Theory of Prob. and App., vol. X, no 2, p. 299–303CrossRefGoogle Scholar
  9. [9]
    HAJEK (1962): Linear Statistical problems in stochastic processes Csenko Math. J., T. 12 (87), p. 404–442MathSciNetzbMATHGoogle Scholar
  10. [10]
    FREIBURGER (1963): An approximation in signal detection Quat. App. Math. 20, p. 373–378Google Scholar

Bibliographie

  1. [1]
    LE CAM: On local and global properties in the theory of asymptotic normality of experiments stochastic process and related topic, vol. 1, Adad. Press, 1975 (article qui recouvre d'autres sujets).Google Scholar
  2. [2]
    LE CAM: Convergence of estimates under dimensionnality restrictions, Annals of Statistics, 1973, vol. 1, no 1, p. 38–53 (qui est assez largement corrigé et amélioré dans [1]).MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    L. BIRGÉ: Sur la construction de Le Cam. Publication d'Orsay et article à paraître.Google Scholar
  4. [4]
    ASSOUAD P.: Espaces métriques, plongements, facteurs — Thèse d'Etat, Orsay — 1976.Google Scholar
  5. [5]
    ASSOUAD P.: Manuscrit (Orsay).Google Scholar

Bibliographie

  1. [1]
    ANDERSON-The statistical analysis of time series (Wiley)Google Scholar
  2. [2]
    BRETAGNOLLE, HUBER (1977)-Estimation des densités-Risques minimax (à paraître)Google Scholar
  3. [3]
    FARREL R.H. (1972)-On best obtainable asymptotic rates of convergence in estimation of a density function at a point-A.M.S. 43, 170–180MathSciNetGoogle Scholar
  4. [4]
    HANNAN-Multidimensionnal time series (Wiley)Google Scholar
  5. [5]
    MEYER TERRY G. (1977)-Bounds for estimation of density functions and their derivatives-A.S. 5, no 1, 136–142.MathSciNetzbMATHGoogle Scholar
  6. [6]
    WAHBA GRACE (1975)-Optimal convergence properties of variable knot, kernel, and orthogonal series methods for density estimation A.S. 3, no 1, 15–29.MathSciNetzbMATHGoogle Scholar

Bibliographie

  1. [1]
    ANDERSON-The statistical Analysis of Time series, Wiley (1970)Google Scholar
  2. [2]
    BILLINGSLEY-Convergence of probability measures, Wiley (1968)Google Scholar
  3. [3]
    FELLER W.-An introduction to Probability theory and its applications-Tome II (Wiley)Google Scholar
  4. [4]
    GUYON X., PRUM B.-Estimation et tests relatifs aux processus spatiaux réguliers du second ordre-Preprint, Orsay (1976)Google Scholar
  5. [5]
    HAJEK et SIDAK-Theory of Rank Tests-Prague (1967)Google Scholar
  6. [6]
    IBRAGIMOV I.A., KHASMINSKII R.Z.-Asymptotic behavior of statistical estimators in the smooth — Case I — Study of the likelihood ratio-Theory of Prob. and appl., vol. XVII, no 3, pp. 445–462 (1972)zbMATHGoogle Scholar
  7. [7]
    LE CAM L.-On the assumptions used to prove asymptotic normality of maximum likelihood estimates-Ann. Math. Stat. 41, 3, p. 802–828, (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    PARTHARASARATHY-Probability measures on metric spaces-Academic Press (1967)Google Scholar
  9. [9]
    PHAN DINH-Thèse, Université de Grenoble (1975)Google Scholar
  10. [10]
    ROUSSAS G.R.-Contiguity of probability measures (Cambridge Univ. Press)Google Scholar
  11. [11]
    WALKER-Asymptotic properties of least square estimates of parameters of the spectrum of a stationnary non deterministic time series-A.M.S. 35, p. 363–384 (1964).zbMATHGoogle Scholar
  12. [12]
    DENIAU, OPPENHEIM, VIANO-Manuscrit, Orsay.Google Scholar

Bibliographie

  1. [1]
    BILLINGSLEY-Convergence of probability measures (Wiley), 1968.Google Scholar
  2. [2]
    FELLER: An introduction to Probability theory and its applications (Wiley), Tome II (1966).Google Scholar
  3. [3]
    B. V. GNEDENKO-KOLMOGOROV: Limit distributions for series of independant random variables-Addison Wesley Mathematics (1954)Google Scholar
  4. [4]
    IBRAGIMOV-HÄMINSKII (1972): Asymptotic behavior of statistical estimates for samples with discontinuous density-Math URSS Sbornik vol. 16, no 4.Google Scholar
  5. [5]
    RAO-PROKASA (1968): Estimation of the location of the cusp of a continuous density-Annals of Math. Stat. vol. 39, no 1, p. 76–87.MathSciNetCrossRefGoogle Scholar
  6. [6]
    WOODROOFE (1972): Maximum estimation of translation parameter of a likelihood truncated distribution I, Annals Math. Stat. 43, p. 113–122MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    WOODROOFE (1974): Maximum likelihood estimation of translation parameter of truncated distribution II, Annals of Stat., vol. 2, no 3, p. 474–488.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    LE CAM (1974): Note on asymptotic methods in statistical decision theory-Université de Montréal.Google Scholar

Bibliographie

  1. [1]
    STONE C.J.-Asymptotic properties of estimations of a location parameter-Annals of Stat., 2, pp. 1127–1137 (1974)CrossRefzbMATHGoogle Scholar
  2. [2]
    STONE C.J. Adaptative maximum likelihood of a location parameter-Annals of Stat., 3, pp. 267–284 (1975)CrossRefzbMATHGoogle Scholar
  3. [3]
    Séminaire de Statistique Orsay-Paris VII (1974–1975)-Astérisque no 43–44 (1977)Google Scholar
  4. [4]
    HAJEK J.-Local asymptotic minimax and admissibilities in estimation-Proc. Sixth Berkeley Symp. Math. Stat. Prob. (1972)Google Scholar
  5. [5]
    HUBER-CAROL C.-Un exemple du principe de Stein en dimension infinie-Manuscrit.Google Scholar
  6. [6]
    EL GAYAR S.-Estimation pour des modèles autorégressifs non gaussiens-Thèse de 3ème cycle-Orsay.Google Scholar
  7. [7]
    PICARD D.-Référence [3]-Chapitre no XVIGoogle Scholar
  8. [8]
    PFANZAGL J. Preprints in Statistics-Université de Cologne, no 7 (1974)Google Scholar
  9. [9]
    STEIN C. Proceedings of the third Berkeley Symposium on Math. Stat. and Probability. Efficient nonparametric Testing and Estimation, pp. 187–195 (1956).Google Scholar
  10. [10]
    HUBER-CAROL C.-Estimation de l'information-Manuscrit.Google Scholar

Bibliographie

  1. [1]
    BAHADUR R.R. (1966)-An optimal property of the likelihood ratio statistics-Proc. Fifth Berkeley Symp. Math. Statist. 1, 13–26.MathSciNetGoogle Scholar
  2. [2]
    BAHADUR R.R. (1967)-Rates of convergence of estimates and tests statistics.-Ann. Math. Statist. 38, 303–324MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    BAHADUR R.R., RAGHAVACHARI-Some asymptotic properties of likelihood ratios. Sixth Berkeley Symp. Math. Stat. 1, pp. 129–151.Google Scholar
  4. [4]
    BIRGÉ L. (1977)-Preprint Orsay, soumis aux Annals of Statistics.Google Scholar
  5. [5]
    BROWN L.D. (1971)-Non local asymptotic optimality of appropriate likelihood ratio tests. Ann. of Math. Stat. vol. 42, p. 1206–1240MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    GUEGAN D. (1977)-Loi limite de la statistique de test de vraisemblance-Thèse de 3ème cycle-Orsay.Google Scholar
  7. [7]
    LE CAM L. (1974)-Notes on asymptotic methods in statistical decision theory-Centre de Recherches Mathématiques-Université de Montréal.Google Scholar
  8. [8]
    Séminaire de Statistique Orsay-Paris VII (1974–1975)-Astérisque no 43–44 (1977).Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

There are no affiliations available

Personalised recommendations