Advertisement

Automorphic group representations : The hyperfinite II1 factor and the Weyl algebra

  • R. J. Plymen
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 725)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.J. BLATTNER: "Automorphic group representations", Pacific J. Math. 8(1958) p. 665–677.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    G. BURDET, M. PERRIN and M. PERROUD: "Generating functions for the affine symplectic group", Commun.Math.Phys. 58 (1978) p. 241–254.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    A. CONNES: "Periodic automorphisms of the hyperfinite factor of type II1", Acta Sci. Math. 39 (1977) p. 39–66.MathSciNetzbMATHGoogle Scholar
  4. 4.
    S. DOPLICHER, D. KASTLER and D. ROBINSON: "Covariance algebras in field theory and statistical mechanics", Commun. Math. Phys. 3(1966) p. 1–28.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    T, FACK and O. MARECHAL: "Sur la classification des symétries des C*-algèbres UHF", to appear.Google Scholar
  6. 6.
    P. de la HARPE: "Sous-groupes distingués du groupe unitaire et du groupe général linéaire d’un espace de Hilbert", Comment. Math. Helvetici 51 (1976) p. 241–257.zbMATHCrossRefGoogle Scholar
  7. 7.
    P. de la HARPE and R.J. PLYMEN: "Automorphic group representations: a new proof of Blattner’s theorem", to appear.Google Scholar
  8. 8.
    M. KAROUBI: K-theory (Springer, Berlin, 1978).zbMATHCrossRefGoogle Scholar
  9. 9.
    D. KASTLER: "Equilibrium states of matter and operator algebras", Symp. Math. 20 (1976) p. 49–107.MathSciNetGoogle Scholar
  10. 10.
    A.A. KIRILLOV: "Elements of the theory of representations", (Springer, Berlin, 1976).zbMATHCrossRefGoogle Scholar
  11. 11.
    B. KOSTANT: "Symplectic spinors", Symp. Math. 14 (1974), p. 139–152.MathSciNetGoogle Scholar
  12. 12.
    S. LANG: SL(2,R), (Addison-Wesley, London, 1975).zbMATHGoogle Scholar
  13. 13.
    I.E. SEGAL: "Tensor algebras over Hilbert spaces, I", Trans. Amer. Math. Soc. 81 (1956) p. 106–134.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    I.E. SEGAL: "Tensor algebras over Hilbert spaces, II", Ann. Math. 63(1956) p. 160–175.zbMATHCrossRefGoogle Scholar
  15. 15.
    D. SHALE: "Linear symmetries of free boson fields", Trans. Amer. Math. Soc. 103 (1962) p. 149–167.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    D. SHALE and W.F. STINESPRING: "Spinor representations of infinite orthogonal groups", J. Math. Mech. 14 (1965) p. 315–322.MathSciNetzbMATHGoogle Scholar
  17. 17.
    J. SLAWNY: "On factor representations and the C*-algebra of CCR", Commun. Math. Phys. 24 (1972) p. 151–170.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    M. TAKESAKI: "Duality for crossed products and the structure of von Neumann algebras of type III", Acta Math. 131 (1973) p. 249–310.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    A. WEIL: "Sur certains groupes d’opérateurs unitaires", Acta Math. 111 (1964) p. 143–211.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • R. J. Plymen
    • 1
  1. 1.Mathematics DepartmentThe UniversityManchesterEngland

Personalised recommendations