Advertisement

Characterization and norms of derivations on von Neumann algebras

  • B. Johnson
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 725)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. CHRISTENSEN, Extensions of derivations, J. Functional Analysis 27 (1978) 234–247.zbMATHCrossRefGoogle Scholar
  2. [2]
    E. CHRISTENSEN, Perturbations of operator algebras II, Indiana Univ. Math. Journal 26 (1977) p. 891–904.zbMATHCrossRefGoogle Scholar
  3. [3]
    J. DIXMIER, Les algèbres d’opérateurs dans l’espace hilbertien, 2ème édition, Gauthier-Villars 1969.Google Scholar
  4. [4]
    P. GAJENDRAGADKAR, Norm of a derivation on a von Neumann algebra, Trans. Amer. Math. Soc. 170 (1972) p. 165–170.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    R.V. KADISON, Derivations of operator algebras, Ann. of Math. 83 (1966), p. 280–293.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    C.A. McCARTHY, The norm of a certain derivation, Pacific J. Math. 53 (1974) p. 515–518.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    S. SAKAI, On a conjecture of Kaplansky, Tohoku Math. J. 12 (1960) 31–33.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    S. SAKAI, Derivations of W*-algebras, Ann. of Math. 83 (1966) p. 273–279.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    J.G. STAMPFLI, On the norm of a derivation, Pacific J.Math. 33 (1970) p. 737–747.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    L. ZSIDÓ, The norm of a derivation on a W*-algebra, Proc. Amer. Math. Soc. 38 (1973) p. 147–150.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • B. Johnson

There are no affiliations available

Personalised recommendations