Advertisement

Decompositions of graphs and hypergraphs

  • T. P. Speed
Contributed Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 686)

Abstract

The notion of a decomposition of a class of hypergraphs is introduced. Stimulated by the requirements of certain problems in probability and statistics, the problem of describing all decompositions of such a hypergraph is attacked.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. (1).
    C. Berge. Graphs and Hypergraphs. North Holland/American Elsevier, 1973.Google Scholar
  2. (2).
    Shelby J. Haberman. The Analysis of Frequency Data. The University of Chicago Press, Chicago and London, 1974.zbMATHGoogle Scholar
  3. (3).
    András Hajnal und János Surányi. Über die auflösung von graphen in vollständige teilgraphen. Ann. Univ. Sci. Budapest. 1 (1958) 113–121.zbMATHGoogle Scholar
  4. (4).
    Hans G. Kellerer. Verteilungsfunktionen mit gegebenen Marginalverteilungen. Z. Warscheinlichkeitstheorie. 3 (1964) 247–270.MathSciNetCrossRefzbMATHGoogle Scholar
  5. (5).
    S.L. Lauritzen, T.P. Speed and K. Vijayan. Decomposable graphs and Hypergraphs (1976) Manuscript, 25 pp. To be submitted.Google Scholar
  6. (6).
    P. Suomela. Construction of Nearest-neighbour systems. Annales Academiae Scientarum Fennicae Series A. Mathematical Dissertationes. 10 (1976) 1–56.MathSciNetGoogle Scholar
  7. (7).
    N.N. Vorob'ev. Consistent families of measures and their extensions. Theor. Prob. Appl. 7 (1962) 147–163.CrossRefzbMATHGoogle Scholar
  8. (8).
    N.N. Vorob'ev. Markov measures and Markov extensions. Theor. Prob. Appl. 8 (1963) 420–429.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • T. P. Speed
    • 1
  1. 1.Department of MathematicsThe University of Western AustraliaNedlandsAustralia

Personalised recommendations