Skip to main content

Numerical aspects of singular perturbation problems

  • Part 2 Survey Papers With Research Aspects
  • Conference paper
  • First Online:
Asymptotic Analysis II —

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 985))

Abstract

In this paper a brief survey is given of the main problems that are encountered when singular perturbation problems are solved by numerical means. Some areas of current research are indicated.

For a two-dimensional model problem an error estimate is given for the Hughes and Brooks Streamline-Upwind Petrov-Galerkin method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamsson, L.R., H.B. Keller and H.O. Kreiss, Difference approximations for singular perturbations of systems of ordinary differential equations, Num. Math. 22 (1974) 367–391.

    Article  MathSciNet  MATH  Google Scholar 

  2. Ascher, U, J. Christiansen and R.D. Russell, A collocation code for boundary-value problems, Appeared in [17].

    Google Scholar 

  3. Ascher, U. and R. Weiss, Collocation for singular perturbation problems I: first order systems with constant coefficients, Tech. Report. 81-2, Dept. Comp. Sci., Univ. BC, Vancouver, 1981.

    MATH  Google Scholar 

  4. Axelsson, O., Stability and error estimates of Galerkin finite element approximations for convection-diffusion equations, IMA J. Num. Anal. 1 (1981) 329–345.

    Article  MathSciNet  MATH  Google Scholar 

  5. Axelsson, O., L.S. Frank and A. van der Sluis, Analytical and Numerical Approaches to Asymptotic Problems in Analysis, North-Holland Publ. Comp., Amsterdam-New York, 1981.

    MATH  Google Scholar 

  6. Babuska, I. and W.C. Rheinbold, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978) 736–754.

    Article  MathSciNet  MATH  Google Scholar 

  7. Babuska, I. and W.C. Rheinbold, Computational error estimates and adaptive processes for some nonlinear structural problems, Tech. Report ICMA-81-28, Univ. Pittsburg, 1981.

    Google Scholar 

  8. Babuska, I. and W.G. Szymczak, An error analysis for the finite element method applied to convection diffusion problems, Tech. Note BN-962, Inst. Physical Sc. and Tech., Univ. Maryland, 1981.

    Google Scholar 

  9. Baines, M.J. and K.W. Morton (eds), Proceedings of the conference on Numerical Methods in Fluid Dynamics, Reading, U.K., March 29–31, 1982.

    Google Scholar 

  10. Bank, R.E. and A.H. Sherman, An adaptive Multi-Level method for Elliptic Boundary Value Problems, Computing 26 (1981) 91–105.

    Article  MathSciNet  MATH  Google Scholar 

  11. Barrett, J.W. and K.W. Morton, Optimal finite element solutions to diffusion-convection problems in one dimension, Int. J. Num. Meth. Engng 15 (1980) 1457–1474.

    Article  MathSciNet  MATH  Google Scholar 

  12. Barrett, J.W. and K.W. Morton, Optimal Petrov-Galerkin Methods through Approximate Symmetrization, IMA. J. Num. Anal. 1 (1981) 439–468.

    Article  MathSciNet  MATH  Google Scholar 

  13. Barrett, K.E., Finite element analysis for flow between rotating discs using exponentially weighted basis functions, Int. J. Num. Meth. Engng 11 (1977) 1809–1817.

    Article  MATH  Google Scholar 

  14. Berger, A.E., J.M. Solomon and M. Ciment, An analysis of a uniformly accurate difference method for a singular perturbation problem, Math. Comp. 37 (1981) 79–94.

    Article  MathSciNet  MATH  Google Scholar 

  15. Brandt, A., Numerical stability and fast solutions to boundary value problems, Appeared in [40].

    Google Scholar 

  16. Brooks, A.N. and T.J.R. Hughes, Streamline-Upwind Petrov-Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations, Babylon preprint series No. 5, 1981; to appear in Comp. Meth. Appl. Mech. Engng.

    Google Scholar 

  17. Childs, B., M. Scott, J.W. Daniel, E. Denman and P. Nelson, Codes for Boundary Value Problems in Ordinary Differential Equations, Lecture Notes in Comp. Sc. 76, Springer Verlag, 1979.

    Google Scholar 

  18. Christie, I., D.F. Griffiths, A.R. Mitchell and O.C. Zienkiewicz, Finite element methods for second order differential equations with significant first derivatives. Int. J. Num. Meth. Engng 10 (1976) 1389–1396.

    Article  MathSciNet  MATH  Google Scholar 

  19. Ciarlet, P.G., The finite element method for elliptic problems, North-Holland Publ. Comp., Amsterdam-New York, 1978.

    MATH  Google Scholar 

  20. Doolan, E.P., J.J.H. Miller and W.H.A. Schilders, Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin, 1980.

    MATH  Google Scholar 

  21. Dorr, F.W., The numerical solution of singular perturbations of boundary value problems, SIAM J. Num. Analysis 7 (1970) 281–311.

    Article  MathSciNet  MATH  Google Scholar 

  22. Eckhaus, W. and E.M. de Jager, Proceedings of the conference on Singular Perturbation Theory with Applications, Oberwolfach, GFR, August 16–22, 1981. To appear in LNM series, Springer Verlag, 1982.

    Google Scholar 

  23. El-Mistikawy, T.M. and M.J. Werle, Numerical methods for boundary layers with blowing — The exponential box scheme, AIAA J. 16 (1978) 749–751.

    Article  MATH  Google Scholar 

  24. Griffiths, D.F. and J. Lorenz, An analysis of the Petrov-Galerkin finite element method applied to a model problem, Comp. Meth. Appl. Mech. Engng 14 (1978) 39–64.

    Article  MathSciNet  MATH  Google Scholar 

  25. Groen, P.P.N. de, A finite element method with a large mesh-width for a stiff two-point boundary value problem, J. Comp. Appl. Math. 7 (1981) 3–15.

    Article  MathSciNet  MATH  Google Scholar 

  26. Groen, P.P.N. de and P.W. Hemker, Error bounds for exponentially fitted Galerkin methods applied to stiff two-point boundary value problems, Appeared in [33]..

    Google Scholar 

  27. Hackbusch, W. and U. Trottenberg, Proceedings of the Conference on Multigrid Methods, Köln, GFR, November 23–27, 1981. To appear in LNM series, Springer Verlag, 1982.

    Google Scholar 

  28. Hagarty, A.F., J.J.H. Miller and E. O’Riordan, Uniform Second Order Difference Schemes for Singular Perturbation Problems, Appeared in [40]..

    Google Scholar 

  29. Heinrich, J.C., P.S. Huyakorn, A.R. Mitchell and O.C. Zienkiewicz, An upwind finite element scheme for two-dimensional convective transport equations, Int. J. Num. Meth. Engng 11 (1977) 131–143.

    Article  MATH  Google Scholar 

  30. Hemker, P.W. A numerical study of stiff two-point boundary problems, MCT 80, Mathematical Centre, Amsterdam, 1977.

    MATH  Google Scholar 

  31. Hemker, P.W., An accurate method without directional bias for the numerical solution of a 2-D elliptic singular perturbation problem, Report NW 117/81, Mathematical Centre, Amsterdam, 1982. Appears in [22].

    MATH  Google Scholar 

  32. Hemker, P.W., Mixed defect correction iteration for the accurate solution of the convection diffusion equation, Report NW 122/82, Mathematical Centre, Amsterdam, 1982. Appears in [27].

    Google Scholar 

  33. Hemker, P.W. and J.J.H. Miller (eds), Numerical Analysis of Singular Perturbation Problems, Academic Press, London, 1979.

    Google Scholar 

  34. Hughes, T.J.R. (ed.), Finite Element Methods for Convection Dominated Flows, ASME, New York, 1979.

    Google Scholar 

  35. Il’in, A.M., Difference scheme for a differential equation with a small parameter affecting the highest derivative, Mat. Zametki 6, 237–248; Math. Notes 6 (1969) 596–602.

    Google Scholar 

  36. Johnson, C. and U. Nävert, Analysis of some finite element methods for advection-diffusion problems, Appeared in [5]..

    Google Scholar 

  37. Kellogg, R.B. and A. Tsan, Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comp. 32 (1978) 1025–1039.

    Article  MathSciNet  MATH  Google Scholar 

  38. Lorenz, J., Nonlinear singular perturbation problems and the Engquist-Osher difference scheme, Report 8115, Math. Inst., Univ. Nijmegen, 1981.

    Google Scholar 

  39. Miller, J.J.H., Sufficient conditions for the convergence, uniformly in ε, of a three-point difference scheme for a singular perturbation problem, In: Numerical Treatment of Differential Equations in Applications (R. Ansorge and W. Tornig, ed.), Lect. Notes in Maths. No. 679 (1978) 85–91, Berlin, Springer.

    Chapter  Google Scholar 

  40. Miller, J.J.H. (ed.), Boundary and Interior Layers-Computational and Asymptotic Methods, Boole Press, Dublin, 1980.

    Google Scholar 

  41. Miranker, W.L. and D.Y. Yun, A note on boundary layer elements, Report RC 4990, IBM Yorktown Heights, 1974.

    Google Scholar 

  42. Morton, K.W., Finite element methods for non-selfadjoint problems, Num. Anal. Rept 3/81, Univ. Reading; To appear in: Procs SRC Numerical Analysis Summer School and Workshop, Univ. Lancaster, to be published by Springer Verlag.

    Google Scholar 

  43. Nävert, U., The stream-line diffusion method for time dependent convection-diffusion problems with small diffusion, Report 81.01.R, Chalmers Univ. Tech., Göteborg, 1981.

    Google Scholar 

  44. Osher, S., Nonlinear singular perturbation problems and one-sided difference schemes, SIAM J. Numer. Anal. 18 (1981) 129–144.

    Article  MathSciNet  MATH  Google Scholar 

  45. Pearson, C.E., On a differential equation of boundary layer type, J. Math. Phys. 47 (1968) 134–154.

    Article  MathSciNet  MATH  Google Scholar 

  46. Pereyra, V., PASVA 3: an adaptive finite difference program for first order nonlinear ordinary boundary problems, Appeared in [17].

    Google Scholar 

  47. Raithby, G.D., A critical evaluation of upstream differencing applied to problems involving fluid flow, Comp. Meth. Appl. Mech. Engng 9 (1976) 75–103.

    Article  MathSciNet  MATH  Google Scholar 

  48. Reinhardt, H.J., A-posteriori error estimates and adaptive finite element computations for singularly perturbed one space dimensional parabolic equations, Appeared in [5]..

    Google Scholar 

  49. Reinhardt, H.J., A-posteriori error estimates for the finite element solution of a singularly perturbed linear ordinary differential equation, SIAM J. Num. Analysis 18 (1981) 406–430.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

F. Verhulst

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Hemker, P.W. (1983). Numerical aspects of singular perturbation problems. In: Verhulst, F. (eds) Asymptotic Analysis II —. Lecture Notes in Mathematics, vol 985. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0062371

Download citation

  • DOI: https://doi.org/10.1007/BFb0062371

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12286-9

  • Online ISBN: 978-3-540-39612-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics