Skip to main content

A survey of the congruence subgroup problem

Part I

Part of the Lecture Notes in Mathematics book series (LNM,volume 966)

Keywords

  • Exact Sequence
  • Algebraic Group
  • Central Extension
  • Division Algebra
  • Chevalley Group

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0062176
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-39553-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.95
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bak: K-theory of forms, Ann. Math. Studies, Princeton University Press, Annals of Math. Studies, Vol. 98 (1981).

    Google Scholar 

  2. A. Bak and U. Rehmann: Le problème des sous-groupes de congruence dans SLn≥2 sur un corps gauche, C.R. Acad. Sc. Paris, Série A-151 (16 juillet 1979).

    Google Scholar 

  3. A. Bak and U. Rehmann, The congruence subgroup and metaplectic problems for SLn≥2 of division algebras, preprint (1980).

    Google Scholar 

  4. H. Bass: K-theory and stable algebra, Publ. Math. I.H.E.S. no. 22 (1964), 5–60.

    Google Scholar 

  5. H. Bass, Lazard and J.-P. Serre: Sous-groupes d’indice fini dans SL(n,Z), Bull. Am. Math. Soc., 70 (1964), 385–392.

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. H. Bass, J. Milnor and J.-P. Serre: Solution of the congruence subgroup problem for SLn (n≥3) and Sp2n (n≥2), Publ. Math. I.H.E.S. 33 (1967), 59–137.

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. S. Chase and W.C. Waterhouse: Moore’s theorem on uniqueness of reciprocity laws, Inventiones math. 16 (1972), 267–270.

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. V. Deodhar: On central extensions of rational points of algebraic groups, Amer. J. Math. 100 (1978), 303–386.

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. M. Eichler: Allgemeine Kongruenzklasseneinteilungen der Ideale einfacher Algebren über algebraischen Zahlkörpern und ihre L-Reihen, J. f.d. reine u. angew. Math. 179 (1938), 227–251.

    MATH  MathSciNet  Google Scholar 

  10. R. Fricke: Über die Substitutionsgruppen, welche zu den aus dem Legendreschen Integralmodul k2(ω) gezogenen Wurzeln gehören. Math. Ann. 28 (1887), 99–118.

    CrossRef  Google Scholar 

  11. J.E. Humphreys: Arithmetic groups, Lecture Notes in Math. 789 (1980)

    Google Scholar 

  12. F. Klein: Zur Theorie der elliptischen Modulfunktionen, Math. Ann. 17 (1880), 62–70.

    CrossRef  MathSciNet  Google Scholar 

  13. M. Kneser: Starke Approximation in algebraischen Gruppen I, J. f.d. reine u. angew. Math. 218 (1965), 190–203.

    MATH  MathSciNet  Google Scholar 

  14. M. Kneser: Normalteiler ganzzahliger Spin-Gruppen, J. f.d. reine u. angew. Math. 311/312 (1979), 191–214.

    MATH  MathSciNet  Google Scholar 

  15. F. Kubota: Ein arithmetischer Satz über eine Matrizengruppe, J. f.d. reine u. angew. Math. 222 (1965), 55–57.

    MATH  MathSciNet  Google Scholar 

  16. H. Matsumoto: Sur les sous-groupes arithmétiques des groupes semisimples déployés, Ann. sci. E.N.S. IV Sér, 2 (1969), 1–62.

    MATH  Google Scholar 

  17. J. Mennicke: Finite factor groups of the unimodular group, Ann. of Math. 81 (1965), 31–37.

    CrossRef  MATH  MathSciNet  Google Scholar 

  18. C.C. Moore: Group extensions of p-adic and adelic linear groups, I.H.E.S., Publ. Math. 35 (1968), 5–70.

    CrossRef  MATH  Google Scholar 

  19. T. Nakayama and Y. Matsushima: Über die multiplikative Gruppe einer p-adischen Divisionsalgebra, Proc. Imp. Acad. Japan 19 (1943), 622–628.

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. G. Prasad: Strong approximation for semi-simple groups over function fields, Ann. of Math. 105 (1977), 553–572.

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. M. Raghunathan: On the congruence subgroup problem, Publ. Math. I.H.E.S. 46 (1976), 107–161.

    CrossRef  MATH  MathSciNet  Google Scholar 

  22. U. Rehmann: Zentrale Erweiterungen der speziellen linearen Gruppe eines Schiefkörpers, J.f.d. reine u. angew. Math. 301 (1978), 77–104.

    MATH  MathSciNet  Google Scholar 

  23. U. Rehmann and U. Stuhler: On K2 of finite dimensional division algebras over arithmetical fields, Inv. math. 50 (1978), 75–90.

    CrossRef  MATH  MathSciNet  Google Scholar 

  24. J.-P. Serre: Groupes de congruence, Seminaire Bourbaki, 14e année, 1966/67, no. 330.

    Google Scholar 

  25. J.-P. Serre: Le problème des groupes de congruence pour SL2, Ann. Math. 92 (1970), 489–572.

    CrossRef  MATH  Google Scholar 

  26. M. Stein and R.K. Dennis: K2 of radical ideals and semi-local rings revisited, Lecture Notes in Math. 342 (1973), 281–303.

    MathSciNet  Google Scholar 

  27. R. Steinberg: Générateurs, Relations et Revêtements de Groupes Algebriques, Colloque sur la théorie des Groupes Algebriques, Bruxelles (1962), 113–127.

    MATH  Google Scholar 

  28. R. Steinberg: Lectures on Chevalley groups, New Haven, Yale University (1967).

    Google Scholar 

  29. L. Vaserstein: The structure of classical arithmetic groups of rank greater than one, Mat. Sb. (N.S.) 91 (133) (1973), 445–470 = Math. USSR Sbornik 20 (1973), no. 3, 465–492.

    MathSciNet  Google Scholar 

  30. S. Wang: On the commutator group of a simple algebra, Amer. J. Math. 72 (1950), 323–334.

    CrossRef  MATH  MathSciNet  Google Scholar 

  31. A. Bak: Le problème des sous-groupes de congruence et le problème métaplectique pour les groupes classiques de rang >1, C. R. Acad. Sc. Paris t. 292 (1981), Serié I-307–310.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Rehmann, U. (1982). A survey of the congruence subgroup problem. In: Dennis, R.K. (eds) Algebraic K-Theory. Lecture Notes in Mathematics, vol 966. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0062176

Download citation

  • DOI: https://doi.org/10.1007/BFb0062176

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11965-4

  • Online ISBN: 978-3-540-39553-9

  • eBook Packages: Springer Book Archive