Skip to main content

The conductor of some one-dimensional rings and the computation of their K-theory groups

Part I

Part of the Lecture Notes in Mathematics book series (LNM,volume 966)

Keywords

  • Exact Sequence
  • Local Ring
  • Maximal Ideal
  • Tangent Cone
  • Jacobson Radical

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0062175
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-39553-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.95
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Geller and L.G. Roberts, Kahler differentials and excision for curves, J. Pure Appl. Algebra 17(1980), 85–112.

    MathSciNet  CrossRef  MATH  Google Scholar 

  2. J. Graham, Continuous symbols on fields of formal power series, Lecture Notes in Math., Vol. 342, Springer-Verlag, Berlin, pp. 474–486, 1973.

    Google Scholar 

  3. A. Grothendieck and J. Dieudonné, Elèments de Gèomètrie Algèbrique, IV, Quatriem Partie, I.H.E.S., Publ. Math. 32, Paris, 1967

    Google Scholar 

  4. S. K. Gupta, SK1 of s-lines in /An+1, Comm. Algebra, to appear.

    Google Scholar 

  5. J. Lipman, Stable ideals and Arf rings, Amer. J. Math., 93 (1971), 649–685.

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. E. Matlis, One-dimensional Cohen-Macaulay rings, Lecture Notes in Math., Vol. 327, Springer-Verlag, Berlin, 1970.

    MATH  Google Scholar 

  7. F. Orecchia, Sui gruppi di Picard di certe algebre finite non integre, Ann. Univ. Ferrara, Sez, VII, 21 (1975), 25–36.

    MathSciNet  MATH  Google Scholar 

  8. F. Orecchia, Sui gruppi delle unità e i gruppi di Picard relativi a una varietà affine ridotta e alla sua normalizzata, Boll. Un. Mat. Ital. (5) 18-B (1977), 1–2.

    MathSciNet  MATH  Google Scholar 

  9. F. Orecchia, Su alcuni gruppi della K-Teoria delle varietà affini, Ann. di Matem. pura ed applicata, (IV), Vol. CXXIII, pp. 203–217 (1980).

    MathSciNet  CrossRef  MATH  Google Scholar 

  10. F. Orecchia, One-dimensional local rings with reduced associated graded ring and their Hilbert function, Manuscripta Math., 32 (1980), 391–405.

    MathSciNet  CrossRef  MATH  Google Scholar 

  11. F. Orecchia, Points in generic position and conductors of curves with ordinary singularities, J. London Math. Soc., to appear.

    Google Scholar 

  12. L.G. Roberts, SK1 of n lines in the plane, Trans. Amer. Math. Soc. 222, (1976), 353–365.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Orecchia, F. (1982). The conductor of some one-dimensional rings and the computation of their K-theory groups. In: Dennis, R.K. (eds) Algebraic K-Theory. Lecture Notes in Mathematics, vol 966. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0062175

Download citation

  • DOI: https://doi.org/10.1007/BFb0062175

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11965-4

  • Online ISBN: 978-3-540-39553-9

  • eBook Packages: Springer Book Archive