Skip to main content

On projective modules over polynomial rings over regular rings

Part I

Part of the Lecture Notes in Mathematics book series (LNM,volume 966)

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0062174
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-39553-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.95
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bass, Some problems in "classical" Algebraic K-theory. Lecture Notes in Math. 342, Springer Verlag, Berlin und New York, 1973.

    MATH  Google Scholar 

  2. T.Y. Lam, Serre’s Conjecture. Lecture Notes in Math. 635, Springer Verlag, Berlin und New York, 1978.

    CrossRef  MATH  Google Scholar 

  3. S.E. Landsburg, Patching theorems for projective modules. Preprint, Chicago (1979).

    Google Scholar 

  4. H. Lindel und W. Lütkebohmert, Projektive Moduln über polynomialen Erweiterungen von Potenzreihenalgebren, Arch. der Math. 28, 51–54 (1977)

    CrossRef  MATH  Google Scholar 

  5. H. Lindel, Projektive Moduln über Polynomringen A[T1,...,Tn] mit regulärem Grundring A. Manuscripta math. 23, 143–154 (1978).

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. H. Lindel, Erweiterungskriterien für stabil freie Moduln über Polynomringen. Math. Ann. 250, 99–108 (1980)

    MathSciNet  CrossRef  MATH  Google Scholar 

  7. H. Lindel, Projektive Moduln über Polynomringen, Habilitationsschrift Münster 1980.

    Google Scholar 

  8. H. Matsumura, Commutative Algebra, Math. Lecture Notes Series, W.A. Benjamin, New York, 1970.

    MATH  Google Scholar 

  9. J. Milnor, Introduction to Algebraic K-Theory, Annals of Math. Studies 72, Princeton, 1971.

    Google Scholar 

  10. N. Mohan Kumar, On a question of Bass and Quillen. Preprint, Tata Institute, Bombay, 1977.

    MATH  Google Scholar 

  11. D. Quillen, Projective modules over polynomial rings. Invent. Math. 36, 166–172 (1976).

    MathSciNet  CrossRef  MATH  Google Scholar 

  12. M. Roitman, On projective modules over polynomial rings, J.Alg. 58, 51–63 (1979).

    MathSciNet  CrossRef  MATH  Google Scholar 

  13. J.P. Serre, Faisceaux algebriques coherents, Ann. Math. 61, 191–278 (1955).

    MathSciNet  CrossRef  MATH  Google Scholar 

  14. A.A. Suslin, Projective modules over apolynomial ring are free, Dokl. Akad. Nauk 229 (1976) (= Soviet. Math. Dokl. 17, 1160–1164(1976)).

    Google Scholar 

  15. A.A. Suslin, The cancellation problem for projective modules and related topics, in Lecture Notes in Math. 734, Springer Verlag, Berlin und New York, 1979.

    MATH  Google Scholar 

  16. A.C.F. Vorst, The general linear group of polynomial rings over regular rings. Report Erasmus University Rotterdam, 1980.

    Google Scholar 

  17. C.A. Weibel, K-theory and analytic isomorphisms, Invent. Math. 61, 177–197 (1980).

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Lindel, H. (1982). On projective modules over polynomial rings over regular rings. In: Dennis, R.K. (eds) Algebraic K-Theory. Lecture Notes in Mathematics, vol 966. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0062174

Download citation

  • DOI: https://doi.org/10.1007/BFb0062174

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11965-4

  • Online ISBN: 978-3-540-39553-9

  • eBook Packages: Springer Book Archive